ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:27.10KB ,
资源ID:10726926      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10726926.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第二篇物质代谢及其调节.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

第二篇物质代谢及其调节.docx

1、第二篇物质代谢及其调节第二篇物质代谢及其调节第一章糖代谢一、糖酵解、过程:见图1-1糖酵解过程中包含两个底物水平磷酸化:一为1,3-二磷酸甘油酸转变为3-磷酸甘油酸;二为磷酸烯醇式丙酮酸转变为丙酮酸。、调节)磷酸果糖激酶-1变构抑制剂:ATP、柠檬酸变构激活剂:AMP、ADP、1,6-双磷酸果糖(产物反馈激,比较少见)和2,6-双磷酸果糖(最强的激活剂)。)丙酮酸激酶变构抑制剂:ATP 、肝内的丙氨酸变构激活剂:1,6-双磷酸果糖)葡萄糖激酶变构抑制剂:长链脂酰辅酶A注:此项无需死记硬背,理解基础上记忆是很容易的,如知道糖酵解是产生能量的,那么有ATP等能量形式存在,则可抑制该反应,以利节能,

2、上述的柠檬酸经三羧酸循环也是可以产生能量的,因此也起抑制作用;产物一般来说是反馈抑制的;但也有特殊,如上述的1,6-双磷酸果糖。特殊的需要记忆,只属少数。以下类同。关于共价修饰的调节,只需记住几个特殊的即可,下面章节提及。(1)糖原1-磷酸葡萄糖(2)葡萄糖己糖激酶 6-磷酸葡萄糖6-磷酸果糖6-磷酸果糖-1-激酶ATPADPATPADP磷酸二羟丙酮1,6-二磷酸果糖 3-磷酸甘油醛 1,3-二磷酸甘油酸NAD+NADHH+3-磷酸甘油酸 2-磷酸甘油酸 磷酸烯醇式丙酮酸丙酮酸激酶ADPATPADPATP丙酮酸 乳酸NADHH+NAD+注:红色表示该酶为该反应的限速酶;蓝色ATP表示消耗,红色

3、ATP和NADH等表示生成的能量或可以转变为能量的物质。以下类同。(图1-1)、生理意义)迅速提供能量,尤其对肌肉收缩更为重要。若反应按()进行,可净生成分子ATP,若反应按()进行,可净生成分子ATP;另外,酵解过程中生成的个NADH在有氧条件下经电子传递链,发生氧化磷酸化,可生成更多的ATP,但在缺氧条件下丙酮酸转化为乳酸将消耗NADH,无NADH净生成。)成熟红细胞完全依赖糖酵解供能,神经、白细胞、骨髓等代谢极为活跃,即使不缺氧也常由糖酵解提供部分能量。)红细胞内1,3-二磷酸甘油酸转变成的2,-二磷酸甘油酸可与血红蛋白结合,使氧气与血红蛋白结合力下降,释放氧气。)肌肉中产生的乳酸、丙氨

4、酸(由丙酮酸转变)在肝脏中能作为糖异生的原料,生成葡萄糖。、乳酸循环葡萄糖 葡萄糖 葡萄糖糖糖异酵生解途途 径径丙酮酸丙酮酸乳酸乳酸乳酸(肝) (血液) (肌肉)乳酸循环是由于肝内糖异生活跃,又有葡萄糖-6-磷酸酶可水解6-磷酸葡萄糖,释出葡萄糖。肌肉除糖异生活性低外,又没有葡萄糖-6-磷酸酶。生理意义:避免损失乳酸以及防止因乳酸堆积引起酸中毒。二、糖有氧氧化、过程1)、经糖酵解过程生成丙酮酸2)、丙酮酸丙酮酸脱氢酶复合体乙酰辅酶ANAD+ NADHH+ 限速酶的辅酶有:TPPFADNAD+CoA及硫辛酸3)、三羧酸循环草酰乙酸乙酰辅酶A 柠檬酸合成酶柠檬酸异柠檬酸异柠檬酸脱氢酶-酮戊二酸-酮

5、戊二酸脱氢酶复合体琥珀酸酰CoA 琥珀酸NAD+ NADHH+GDPGTP延胡索酸苹果酸草酰乙酸FADFADH2NAD+ NADHH+三羧酸循环中限速酶-酮戊二酸脱氢酶复合体的辅酶与丙酮酸脱氢酶复合体的辅酶同。三羧酸循环中有一个底物水平磷酸化,即琥珀酰COA转变成琥珀酸,生成GTP;加上糖酵解过程中的两个,本书中共三个底物水平磷酸化。、调节)丙酮酸脱氢酶复合体抑制:乙酰辅酶A、NADH、ATP激活:AMP、钙离子)异柠檬酸脱氢酶和-酮戊二酸脱氢酶NADH、ATP反馈抑制、生理意义)基本生理功能是氧化供能。)三羧酸循环是体内糖、脂肪和蛋白质三大营养物质代谢的最终共同途径。)三羧酸循环也是三大代谢

6、联系的枢纽。、有氧氧化生成的ATP葡萄糖有氧氧化生成的ATP反应 辅酶 ATP第一阶段 葡萄糖6-磷酸葡萄糖 -16-磷酸果糖1,6双磷酸果糖 -12*3-磷酸甘油醛2*1,3-二磷酸甘油酸 NAD+ 2*3或2*2(详见)2*1,3-二磷酸甘油酸2*3-磷酸甘油酸 2*12*磷酸烯醇式丙酮酸2*丙酮酸 2*1第二阶段 2*丙酮酸2*乙酰CoA NAD+ 2*3第三阶段 2*异柠檬酸2*-酮戊二酸 NAD+ 2*32*-酮戊二酸2*琥珀酰CoA NAD+ 2*32*琥珀酰CoA2*琥珀酸 2*12*琥珀酸2*延胡索酸 FAD 2*22*苹果酸2*草酰乙酸 NAD+ 2*3净生成38或36个AT

7、P、巴斯德效应有氧氧化抑制糖酵解的现象。三、磷酸戊糖途径、 过程6-磷酸葡萄糖NADP+6-磷酸葡萄糖脱氢酶NADPH6-磷酸葡萄糖酸内酯6-磷酸葡萄糖酸NADP+NADPH5-磷酸核酮糖5-磷酸核糖5-磷酸木酮糖7-磷酸景天糖3-磷酸甘油醛5-磷酸木酮糖4-磷酸赤藓糖6-磷酸果糖3-磷酸甘油醛6-磷酸果糖6-磷酸果糖、生理意义)为核酸的生物合成提供-磷酸核糖,肌组织内缺乏-磷酸葡萄糖脱氢酶,磷酸核糖可经酵解途径的中间产物- 磷酸甘油醛和-磷酸果糖经基团转移反应生成。)提供NADPHa.NADPH是供氢体,参加各种生物合成反应,如从乙酰辅酶A合成脂酸、胆固醇;-酮戊二酸与NADPH及氨生成谷氨

8、酸,谷氨酸可与其他-酮酸进行转氨基反应而生成相应的氨基酸。b.NADPH是谷胱甘肽还原酶的辅酶,对维持细胞中还原型谷胱甘肽的正常含量进而保护巯基酶的活性及维持红细胞膜完整性很重要,并可保持血红蛋白铁于二价。c.NADPH参与体内羟化反应,有些羟化反应与生物合成有关,如从胆固醇合成胆汁酸、类固醇激素等;有些羟化反应则与生物转化有关。四、糖原合成与分解、合成过程:葡萄糖6-磷酸葡萄糖1-磷酸葡萄糖UDPG焦磷酸化酶尿苷二磷酸葡萄糖UTPPPi(UDPG)糖原合成酶(G)n+1UDP(G)n注:)UDPG可看作是活性葡萄糖,在体内充作葡萄糖供体。)糖原引物是指原有的细胞内较小的糖原分子,游离葡萄糖不

9、能作为UDPG的葡萄糖基的接受体。)葡萄糖基转移给糖原引物的糖链末端,形成-1,4糖苷键。在糖原合酶作用下,糖链只能延长,不能形成分支。当糖链长度达到1218个葡萄糖基时,分支酶将约67个葡萄糖基转移至邻近的糖链上,以-1,6糖苷键相接。调节:糖原合成酶的共价修饰调节。、分解过程:(G)n+1磷酸化酶 (G)n1-磷酸葡萄糖 6-磷酸葡萄糖葡萄糖-6-磷酸酶GPi注:)磷酸化酶只能分解-1,4糖苷键,对-1,6糖苷键无作用。)糖链分解至离分支处约个葡萄基时,转移酶把个葡萄基转移至邻近糖链的末端,仍以-1,4糖苷键相接,剩下个以-1,6糖苷键与糖链形成分支的葡萄糖基被-1,6葡萄糖苷酶水解成游离

10、葡萄糖。转移酶与-1,6葡萄糖苷酶是同一酶的两种活性,合称脱支酶。)最终产物中约85为1-磷酸葡萄糖,其余为游离葡萄糖。调节:磷酸化酶受共价修饰调节,葡萄糖起变构抑制作用。五、糖异生途径、 过程乳酸丙氨酸等生糖氨基酸NADH 丙酮酸丙酮酸ATP 丙酮酸丙酮酸丙酮酸羧化酶草酰乙酸草酰乙酸 (线粒体内)天冬氨酸苹果酸GTP天冬氨酸NADH草酰乙酸苹果酸磷酸烯醇式丙酮酸羧激酶磷酸烯醇式丙酮酸2-磷酸甘油酸(胞液)ATP3-磷酸甘油酸 NADH1,3-二磷酸甘油酸甘油ATP3-磷酸甘油醛 磷酸二羟丙酮3-磷酸甘油NADH1,6-双磷酸果糖果糖双磷酸酶6-磷酸果糖6-磷酸葡萄糖1-磷酸葡萄糖糖原葡萄糖-

11、6-磷酸酶葡萄糖注意:)糖异生过程中丙酮酸不能直接转变为磷酸烯醇式丙酮酸,需经过草酰乙酸的中间步骤,由于草酰乙酸羧化酶仅存在于线粒体内,故胞液中的丙酮酸必须进入线粒体,才能羧化生成草酰乙酸。但是,草酰乙酸不能直接透过线粒体膜,需借助两种方式将其转运入胞液:一是经苹果酸途径,多数为以丙酮酸或生糖氨基酸为原料异生成糖时;另一种是经天冬氨酸途径,多数为乳酸为原料异生成糖时。)在糖异生过程中,1,3-二磷酸甘油酸还原成3-磷酸甘油醛时,需NADH,当以乳酸为原料异生成糖时,其脱氢生成丙酮酸时已在胞液中产生了NADH以供利用;而以生糖氨基酸为原料进行糖异生时,NADH则必须由线粒体内提供,可来自脂酸-氧

12、化或三羧酸循环。)甘油异生成糖耗一个ATP,同时也生成一个NADH、 调节2,6-双磷酸果糖的水平是肝内调节糖的分解或糖异生反应方向的主要信号,糖酵解加强,则糖异生减弱;反之亦然。、 生理意义)空腹或饥饿时依赖氨基酸、甘油等异生成糖,以维持血糖水平恒定。)补充肝糖原,摄入的相当一部分葡萄糖先分解成丙酮酸、乳酸等三碳化合物,后者再异生成糖原。合成糖原的这条途径称三碳途径。)调节酸碱平衡,长期饥饿进,肾糖异生增强,有利于维持酸碱平衡。第二章 脂类代谢一、甘油三酯的合成代谢合成部位:肝、脂肪组织、小肠,其中肝的合成能力最强。合成原料:甘油、脂肪酸、 甘油一酯途径(小肠粘膜细胞)2-甘油一酯脂酰CoA

13、转移酶1,2-甘油二酯脂酰CoA转移酶甘油三酯脂酰CoA脂酰CoA、甘油二酯途径(肝细胞及脂肪细胞)葡萄糖3-磷酸甘油脂酰CoA转移酶1脂酰-3-磷酸甘油脂酰CoA转移酶脂酰CoA 脂酰CoA磷脂酸磷脂酸磷酸酶1,2甘油二酯脂酰CoA转移酶甘油三酯脂酰CoA二、甘油三酯的分解代谢、脂肪的动员储存在脂肪细胞中的脂肪被脂肪酶逐步水解为游离脂肪酸(FFA)及甘油并释放入血以供其它组织氧化利用的过程。甘油三酯激素敏感性甘油三酯脂肪酶甘油二酯甘油一酯甘油FFA FFA FFA-磷酸甘油磷酸二羟丙酮糖酵解或糖异生途径、脂肪酸的-氧化)脂肪酸活化(胞液中)脂酸脂酰CoA合成酶脂酰CoA(含高能硫酯键)ATP

14、AMP)脂酰CoA进入线粒体脂酰CoA肉毒碱线肉毒碱脂酰CoA 肉毒碱脂酰转移酶 粒 酶CoASH脂酰肉毒碱 体脂酰肉毒碱CoASH)脂肪酸-氧化脂酰CoA进入线粒体基质后,进行脱氢、加水、再脱氢及硫解等四步连续反应,生成1分子比原来少2个碳原子的脂酰CoA、1分子乙酰CoA、1分子FADH2和1分子NADH。以上生成的比原来少2个碳原子的脂酰CoA,可再进行脱氢、加水、再脱氢及硫解反应。如此反复进行,以至彻底。)能量生成以软脂酸为例,共进行7次-氧化,生成7分子FADH2、7分子NADH及8分子乙酰CoA,即共生成(7*2)+(7*3)+(8*12)-2=129)过氧化酶体脂酸氧化主要是使不

15、能进入线粒体的廿碳,廿二碳脂酸先氧化成较短链脂酸,以便进入线粒体内分解氧化,对较短链脂酸无效。三、酮体的生成和利用组织特点:肝内生成肝外用。合成部位:肝细胞的线粒体中。酮体组成:乙酰乙酸、-羟丁酸、丙酮。、 生成脂肪酸-氧化2*乙酰CoA乙酰乙酰CoAHMGCoA合成酶羟甲基戊二酸单酰CoA(HMGCoA)HMGCoA裂解酶乙酰乙酸-羟丁酸脱氢酶-羟丁酸NADH丙酮CO2、 利用1) -羟丁酸ATP+HSCoA乙酰乙酸琥珀酰CoA乙酰乙酸硫激酶 琥珀酰CoA转硫酶AMP乙酰乙酰CoA 琥珀酸乙酰乙酰CoA硫解酶乙酰CoA三羧酸循环)丙酮可随尿排出体外,部分丙酮可在一系列酶作用下转变为丙酮酸或乳

16、酸,进而异生成糖。在血中酮体剧烈升高时,从肺直接呼出。四、脂酸的合成代谢、 软脂酸的合成合成部位:线粒体外胞液中,肝是体体合成脂酸的主要场所。合成原料:乙酰CoA、ATPNADPHHCO3-Mn+等。合成过程:)线粒体内的乙酰CoA不能自由透过线粒体内膜,主要通过柠檬酸-丙酮酸循环转移至胞液中。)乙酰CoA乙酰CoA羧化酶丙二酰CoAATP)丙二酰CoA通过酰基转移、缩合、还原、脱水、再还原等步骤,碳原子由2增加至4个。经过7次循环,生成16个碳原子的软脂酸。更长碳链的脂酸则是对软脂酸的加工,使其碳链延长。在内质网脂酸碳链延长酶体系的作用下,一般可将脂酸碳链延长至二十四碳,以十八碳的硬脂酸最多

17、;在线粒体脂酸延长酶体系的催化下,一般可延长脂酸碳链至24或26个碳原子,而以硬脂酸最多。、不饱和脂酸的合成人体含有的不饱和脂酸主要有软油酸、油酸、亚油酸,亚麻酸及花生四烯酸等,前两种单不饱和脂酸可由人体自身合成,而后三种多不饱和脂酸,必须从食物摄取。五、前列腺素及其衍生物的生成细胞膜中的磷脂磷脂酶A2花生四烯酸PGH合成酶PGH2TXA2合成酶TXA2PGD2、PGE2、PGI2等脂过氧化酶氢过氧化廿碳四烯酸 脱水酶白三烯(LTA4)六、甘油磷脂的合成与代谢、 合成除需ATP外,还需CTP参加。CTP在磷脂合成中特别重要,它为合成CDP-乙醇胺、CDP-胆碱及CDP-甘油二酯等活化中间物所必

18、需。)甘油二酯途径CDP-乙醇胺CMP磷脂酰乙醇胺葡萄糖3-磷酸甘油磷脂酸甘油二酯转移酶(脑磷脂)磷脂酰胆碱CDP-胆碱CMP(卵磷脂)脑磷脂及卵磷脂主要通过此途径合成,这两类磷脂在体内含量最多。)CDP-甘油二酯途径肌醇 磷脂酰肌醇丝氨酸葡萄糖3-磷酸甘油磷脂酸CDP-甘油二酯合成酶 磷脂酰丝氨酸CTP PPi 磷脂酰甘油二磷脂酰甘油(心磷脂)此外,磷脂酰胆碱亦可由磷脂酰乙醇胺从S-腺苷甲硫氨酸获得甲基生成;磷脂酰丝氨酸可由磷脂酰乙醇胺羧化生成。、降解生物体内存在能使甘油磷脂水解的多种磷脂酶类,根据其作用的键的特异性不同,分为磷脂酶A1和A2,磷脂酶B,磷脂酶C和磷脂酶D。磷脂酶A2特异地催

19、化磷酸甘油酯中2位上的酯键水解,生成多不饱和脂肪酸和溶血磷脂。后者在磷脂酶B作用,生成脂肪酸及甘油磷酸胆碱或甘油磷酸乙醇胺,再经甘油酸胆碱水解酶分解为甘油及磷酸胆碱。磷脂酶A1催化磷酸甘油酯1位上的酯键水解,产物是脂肪酸和溶血磷脂。七、胆固醇代谢、 合成合成部位:肝是主要场所,合成酶系存在于胞液及光面内质网中。合成原料:乙酰CoA(经柠檬酸-丙酮酸循环由线粒体转移至胞液中)、ATP、NADPH等。合成过程:) 甲羟戊酸的合成(胞液中)2*乙酰CoA乙酰乙酰CoAHMGCoA HMGCoA还原酶甲羟戊酸NADPH) 鲨烯的合成(胞液中)胆固醇的合成(滑面内质网膜上)合成调节:)饥饿与饱食饥饿可抑

20、制肝合成胆固醇,相反,摄取高糖、高饱和脂肪膳食后,肝HMGCoA还原酶活性增加,胆固醇合成增加。) 胆固醇胆固醇可反馈抑制肝胆固醇的合成。主要抑制HMGCoA还原酶活性。)激素胰岛素及甲状腺素能诱导肝HMGCoA还原酶的合成,增加胆固醇的合成。胰高血糖素及皮质醇则能抑制并降低HMGCoA还原酶的活性,因而减少胆固醇的合成;甲状腺素除能促进合成外,又促进胆固醇在肝转变为胆汁酸,且后一作用较强,因而甲亢时患者血清胆固醇含量反而下降。、 转化)胆固醇在肝中转化成胆汁酸是胆固醇在体内代谢的主要去路,基本步骤为:胆酸胆固醇7-羟化酶7-羟胆固醇甘氨酸或牛磺酸结合型胆汁酸 NADPH鹅脱氧胆酸胆酸肠道细菌

21、7-脱氧胆酸甘氨酸牛磺酸鹅脱氧胆酸石胆酸)转化为类固醇激素胆固醇是肾上腺皮质、睾丸,卵巢等内分泌腺合成及分泌类固醇激素的原料,如睾丸酮、皮质醇、雄激素、雌二醇及孕酮等。)转化为7-脱氢胆固醇在皮肤,胆固醇可氧化为7-脱氢胆固醇,后者经紫外光照射转变为维生素D。、胆固醇酯的合成细胞内游离胆固醇在脂酰胆固醇脂酰转移酶(ACAT)的催化下,生成胆固醇酯;血浆中游离胆固醇在卵磷脂胆固醇脂酰转移酶(LCAT)的催化下,生成胆固醇酯和溶血卵磷酯。八、血浆脂蛋白、分类)电泳法:前及乳糜微粒)超速离心法:乳糜微粒(含脂最多),极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)和高密度脂蛋白(HDL),分别相当

22、于电泳分离的CM前-脂蛋白-脂蛋白及-脂蛋白等四类。、组成血浆脂蛋白主要由蛋白质、甘油三酯、磷脂、胆固醇及其酯组成。乳糜微粒含甘油三酯最多,蛋白质最少,故密度最小;VLDL含甘油三酯亦多,但其蛋白质含量高于CM;LDL含胆固醇及胆固醇酯最多;含蛋白质最多,故密度最高。血浆脂蛋白中的蛋白质部分,基本功能是运载脂类,称载脂蛋白。HDL的载脂蛋白主要为apoA,LDL的载脂蛋白主要为apoB100,VLDL的载脂蛋白主要为apoBapoC,CM的载脂蛋白主要为apoC。、生理功用及代谢)CM运输外源性甘油三酯及胆固醇的主要形式。成熟的CM含有apoC,可激活脂蛋白脂肪酶(LPL),LPL可使CM中的

23、甘油三酯及磷脂逐步水解,产生甘油、脂酸及溶血磷脂等,同时其表面的载脂蛋白连同表面的磷脂及胆固醇离开CM,逐步变小,最后转变成为CM残粒。)VLDL运输内源性甘油三酯的主要形式。VLDL的甘油三酯在LPL作用下,逐步水解,同时其表面的apoC、磷脂及胆固醇向HDL转移,而HDL的胆固醇酯又转移到VLDL。最后只剩下胆固醇酯,转变为LDL。)LDL转运肝合成的内源性胆固醇的主要形式。肝是降解LDL的主要器官。apoB100水解为氨基酸,其中的胆固醇酯被胆固醇酯酶水解为游离胆固醇及脂酸。游离胆固醇在调节细胞胆固醇代谢上具有重要作用:抑制内质网HMGCoA还原酶;在转录水平上阴抑细胞LDL受体蛋白质的

24、合成,减少对LDL的摄取;激活ACAT的活性,使游离胆固醇酯化成胆固醇酯在胞液中储存。)HDL逆向转运胆固醇。HDL表面的apo是LCAT的激活剂,LCAT可催化HDL生成溶血卵磷脂及胆固醇酯。九、高脂血症高脂蛋白血症分型分型 脂蛋白变化 血脂变化 CM 甘油三酯a LDL 胆固醇b LDLVLDL 胆固醇甘油三酯 IDL 胆固醇甘油三酯 VLDL 甘油三酯 VLDLCM 甘油三酯注:IDL是中间密度脂蛋白,为VLDL向LDL的过度状态。家族性高胆固醇血症的重要原因是LDL受体缺陷第三章氨基酸代谢一、营养必需氨基酸简记为:缬、异、亮、苏、蛋、赖、苯、色二、体内氨的来源和转运、 来源)氨基酸经脱氨基作用产生的氨是体内氨的主要来源;)由肠道吸收的氨;即肠内氨基酸在肠道细菌作用下产生的氨和肠道尿素经细菌尿素酶水解产生的氨。)肾小管上皮细胞分泌的氨主要来自谷氨酰胺在谷氨酰胺酶的催化下水解生成的氨。、转运) 丙氨酸-葡萄糖循环(肌肉) (血液) (肝)肌肉蛋白质葡萄糖葡萄糖葡萄糖尿素氨基酸 糖 糖 尿素循环分 异NH3

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1