ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:19.56KB ,
资源ID:10709418      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10709418.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(三角形垂心的性质总结.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

三角形垂心的性质总结.docx

1、三角形垂心的性质总结三角形垂心的性质总结三角形垂心的性质总结 三角形垂心的性质总结 山西省原平市第一中学任所怀 三角形的垂心定理:在三角形ABC中,求证:它的三条高交于一点。 证明:如图:作BE 于点E,CFAB于点F,且BE交CF于点H,连接AH并 延长交BC于点D。现在我们只要证明ADBC即可。 因为CFAB,BE 所以四边形BFEC为圆内接四边形。四边形AFHE为圆内接四边形。所以FAH=FEH=FEB=FCB由FAH=FCB得 四边形AFDC为圆内接四边形所以AFC=ADC=90即ADBC。 点评:以上证明主要应用了平面几何中的四点共圆的判定与性质。三角形垂心的性质定理1: 锐角三角形

2、的垂心是以三个垂足为顶点的三角形的内心。 如上图,在三角形ABC中,AD、CF、BE分别为BC、AB、AC上的高,D、F、E分别为垂足,H为三角形ABC的垂心。求证:H为三角形DFE的内心。 证明:要证H为三角形DFE的内心,只需证明HF、HE、HD分别平分DFE、FED、EDF。 同样我们还是利用四点共圆的判定与性质来证明。 由BCEF四点共圆得EFC=EBC(都是弧CE所对的圆周角) 由HFBD四点共圆得HFD=HBD=EBC(都是弧HD所对的圆周角) 所以EFH=HFD所以HF平分EFD。同理HE平分FED;HD平分FDE所以H为三角形DFE的内心。 点评:以上两个问题都用到了四点共圆。

3、因为在这个图形中共可得到6个圆内接四边形,你不妨找一找。 三角形垂心的向量表示: 在心。 中,若点O满足 ,则点O为三角形ABC的垂证明:由同理OB,得 ,则点O为垂心。 ,所以。 三角形垂心性质定理2: 若三角形的三个顶点都在函数证明:设点O(x,y)为 的图象上,则它的垂心也在这个函数图象上。 的垂心,则上面的向量表示得 因为的三个顶点都在函数的图象上,所以设, 因为,所以 所以 所以(1) 同理:由得(2) 联立(1)(2)两式,就可解出 显然有垂心O在函数的图象上。 点评:此题恰当地应用了垂心的向量表示,把几何问题转化成了代数问题,完美体现了数形结合的数学思想。 (20xx年全国一卷理

4、科) 的外接圆的圆心为O,两条边上的高的交点为H, ,则实数m= 分析:H显然为 的垂心,我们可取特殊情况来猜想m的值。于是我取为 直角三角形,角A为直角,此时H点与A点重合,且O为BC的中点(如图所示)。此时 ,于是猜想m=1. 而对于一般情况,上面问题,我们不妨称之为三角形的垂心性质定理3: 的外心为O,垂心为H,则 证明:作出。 的外接圆和外接圆直径AD,连接BD,CD。,。 因为直径所对圆周角为直角,所以有因为H为 的垂心,所以 所以HC/BD,BH/DC,所以四边形BDCH为平行四边形,所以 因为所以。 ,且 点评:这条性质联系了三角形的外心与垂心,所得向量关系也相当简洁。以此为背景

5、出高考题,也确实体现了命题者深厚的知识功底。三角形垂心性质定理3: 三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。即: 的外心为O,垂心为H,D为BC中点,则AH=2OD。 证明:因为D为BC中点所以由性质2知:得 所以AH=2OD。 点评:性质定理3,也可看做是性质定理2的推论。三角形垂心性质定理4: 锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。分析:应用上面的性质定理3,上面这一结论可改为 锐角三角形的外接圆与内切圆径之和等于外心到三角形三边距离之和。 即:如图在锐角 中,O为外心,D,E,F分别为三边的中点。设外接圆半径 为R,内切圆半径为r,则OD+

6、OE+OF=R+r. 证明:在锐角, 中,O为外心,D,E,F分别为三边的中点,则OF ,所以有=设 中角A,B,C所对边的长分别为a,b,c. =2C 在圆O中,弧AB所对的圆心角又因OA=OB,OF ,所以 OF=OA*cosC=RcosC。 同理OD=R*cosB,OE=R*cosA 所以 而由三角形内切圆的性质知:所以 这个式子就指出了内切圆半径与外接圆半径的关系。 而要证OD+OE+OF=R+r, 需证:RcosA+RcosB+RcosC=R+即需证 需证(b+c)cosA+(a+c)cosB+(a+b)cosC=a+b+c 而对上式的证明我们可采用正弦定理,化角为边,即需证: si

7、nBcosA+sinCcosA+sinAcosB+sinCcosB+sinAcosC+sinBcosC=sinA+sinB+sinC需证:sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC 而因为A+B+C=所以sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC显然成立所以命题得证。 点评:此题的证明充分联系我们初高中的大量知识,真是做到了“八方联系,浑然一体”(孙维刚老师语)。通过这样的一个问题,我们的数学能力将大大提高。 三角形垂心性质定理5: H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一垂心组

8、)。 此定理的证明相对简单,读者不妨自已试试。在此提出这个性质,主要是看到这里存在的一种广义对称性,即四个点中每一点都可为垂心。这个结论进一步提醒我们要经常换个角度相问题。三角形垂心性质定理6: H为ABC的垂心,则ABC,ABH,BCH,ACH的外接圆是等圆。分析:要证两圆为等圆,只要证明它们的半径(或直径)相等就可以啦。而这两圆都是三角形的外接圆,于是我们就想到了正弦定理。 的直径为 因为HD, 的直径为, 所以四边形BEHD是圆内接四边形 所以所以sinB=sin 所以 所以=, 的外接圆为等圆。 同理ABC,ABH,BCH,ACH的外接圆是等圆。证明略。 点评:该题的证明过程中,应用到

9、了性质1中的圆内接四边形性质和正弦定理。这也正是在提示我们要注意八方联系。 以上我对与三角形垂心有关的性质做了一些总结,当然也难免还有其它性质,我还没有发现。我写文章的目的,也就是在于启发读者经常进行总结,在总结中我们才会有新的发现和创新。 扩展阅读:三角形垂心的性质总结 三角形垂心的性质总结 山西省原平市第一中学任所怀 三角形的垂心定理:在三角形ABC中,求证:它的三条高交于一点。 证明:如图:作BE 于点E,CFAB于点F,且BE交CF于点H,连接AH并 延长交BC于点D。现在我们只要证明ADBC即可。 因为CFAB,BE 所以四边形BFEC为圆内接四边形。四边形AFHE为圆内接四边形。所

10、以FAH=FEH=FEB=FCB由FAH=FCB得 四边形AFDC为圆内接四边形所以AFC=ADC=90即ADBC。 点评:以上证明主要应用了平面几何中的四点共圆的判定与性质。三角形垂心的性质定理1: 锐角三角形的垂心是以三个垂足为顶点的三角形的内心。 如上图,在三角形ABC中,AD、CF、BE分别为BC、AB、AC上的高,D、F、E分别为垂足,H为三角形ABC的垂心。求证:H为三角形DFE的内心。 证明:要证H为三角形DFE的内心,只需证明HF、HE、HD分别平分DFE、FED、EDF。 同样我们还是利用四点共圆的判定与性质来证明。 由BCEF四点共圆得EFC=EBC(都是弧CE所对的圆周角

11、) 由HFBD四点共圆得HFD=HBD=EBC(都是弧HD所对的圆周角) 所以EFH=HFD所以HF平分EFD。同理HE平分FED;HD平分FDE所以H为三角形DFE的内心。 点评:以上两个问题都用到了四点共圆。因为在这个图形中共可得到6个圆内接四边形,你不妨找一找。 三角形垂心的向量表示: 在心。 中,若点O满足,则点O为三角形ABC的垂 证明:由同理OB,得 ,则点O为垂心。 ,所以。 三角形垂心性质定理2: 若三角形的三个顶点都在函数证明:设点O(x,y)为 的图象上,则它的垂心也在这个函数图象上。 的垂心,则上面的向量表示得 因为的三个顶点都在函数的图象上,所以设, 因为,所以 所以

12、所以(1) 同理:由得(2) 联立(1)(2)两式,就可解出 显然有垂心O在函数的图象上。 点评:此题恰当地应用了垂心的向量表示,把几何问题转化成了代数问题,完美体现了数形结合的数学思想。 (20xx年全国一卷理科) 的外接圆的圆心为O,两条边上的高的交点为H, ,则实数m= 分析:H显然为 的垂心,我们可取特殊情况来猜想m的值。于是我取为 直角三角形,角A为直角,此时H点与A点重合,且O为BC的中点(如图所示)。此时 ,于是猜想m=1. 而对于一般情况,上面问题,我们不妨称之为三角形的垂心性质定理3: 的外心为O,垂心为H,则 证明:作出。 的外接圆和外接圆直径AD,连接BD,CD。,。 因

13、为直径所对圆周角为直角,所以有因为H为 的垂心,所以 所以HC/BD,BH/DC,所以四边形BDCH为平行四边形,所以 因为所以。 ,且 点评:这条性质联系了三角形的外心与垂心,所得向量关系也相当简洁。以此为背景出高考题,也确实体现了命题者深厚的知识功底。 三角形垂心性质定理3: 三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。即: 的外心为O,垂心为H,D为BC中点,则AH=2OD。 证明:因为D为BC中点所以由性质2知:得 所以AH=2OD。 点评:性质定理3,也可看做是性质定理2的推论。三角形垂心性质定理4: 锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。

14、分析:应用上面的性质定理3,上面这一结论可改为 锐角三角形的外接圆与内切圆径之和等于外心到三角形三边距离之和。 即:如图在锐角 中,O为外心,D,E,F分别为三边的中点。设外接圆半径 为R,内切圆半径为r,则OD+OE+OF=R+r. 证明:在锐角, 中,O为外心,D,E,F分别为三边的中点,则OF, 所以有=设 中角A,B,C所对边的长分别为a,b,c. =2C 在圆O中,弧AB所对的圆心角又因OA=OB,OF ,所以 OF=OA*cosC=RcosC。 同理OD=R*cosB,OE=R*cosA 所以 而由三角形内切圆的性质知:所以 这个式子就指出了内切圆半径与外接圆半径的关系。 而要证O

15、D+OE+OF=R+r, 需证:RcosA+RcosB+RcosC=R+即需证 需证(b+c)cosA+(a+c)cosB+(a+b)cosC=a+b+c 而对上式的证明我们可采用正弦定理,化角为边,即需证: sinBcosA+sinCcosA+sinAcosB+sinCcosB+sinAcosC+sinBcosC=sinA+sinB+sinC需证:sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC 而因为A+B+C=所以sin(A+B)+sin(A+C)+sin(B+C)=sinA+sinB+sinC显然成立所以命题得证。 点评:此题的证明充分联系我们初高中的

16、大量知识,真是做到了“八方联系,浑然一体”(孙维刚老师语)。通过这样的一个问题,我们的数学能力将大大提高。 三角形垂心性质定理5: H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一垂心组)。 此定理的证明相对简单,读者不妨自已试试。在此提出这个性质,主要是看到这里存在的一种广义对称性,即四个点中每一点都可为垂心。这个结论进一步提醒我们要经常换个角度相问题。 三角形垂心性质定理6: H为ABC的垂心,则ABC,ABH,BCH,ACH的外接圆是等圆。分析:要证两圆为等圆,只要证明它们的半径(或直径)相等就可以啦。而这两圆都是三角形的外接圆,于是我们就想到了正弦定理。 的直径为 因为HD, 的直径为, 所以四边形BEHD是圆内接四边形 所以所以sinB=sin 所以 所以=, 的外接圆为等圆。 同理ABC,ABH,BCH,ACH的外接圆是等圆。证明略。 点评:该题的证明过程中,应用到了性质1中的圆内接四边形性质和正弦定理。这也正是在提示我们要注意八方联系。 以上我对与三角形垂心有关的性质做了一些总结,当然也难免还有其它性质,我还没有发现。我写文章的目的,也就是在于启发读者经常进行总结,在总结中我们才会有新的发现和创新。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1