ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:77.99KB ,
资源ID:10707437      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10707437.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(食品添加剂与淀粉胶体之间相互作用.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

食品添加剂与淀粉胶体之间相互作用.docx

1、食品添加剂与淀粉胶体之间相互作用食品添加剂与淀粉胶体之间相互作用摘 要:该文主要从亲水性胶体对淀粉糊化性质、挤压特性、流变学性质的影响及不同盐、糖对淀粉一亲水性胶体混合凝胶体系作用研究入手;综述变性淀粉与食品胶体协同作用可能机理,并对淀粉一亲抽胜胶体混合凝胶体系在食品中应用进行介绍。关键词:亲水胶体;淀粉;混合凝胶体系淀粉是许多焙烤、蒸煮和挤压膨化食品的一种基本成分。非淀粉胶体(如瓜尔胶和阿拉伯胶)的亲水部分可与淀粉的直链部分发生相互作用,从而改善淀粉的特性。因此,亲水性胶体已广泛应用于食品加业,改善食品质构,保持食品稳定性,提高食品品质1。其它一些食品添加剂,如硬脂酰乳酸钠(SSL)、双乙酰

2、酒石酸甘油单酯(DATEM)和柠檬酸(CA),也被用来改善食品的品质2。本文着重研究植物性亲水胶体(瓜尔胶和阿拉伯胶)、 乳化剂(SSL和DATEM)与柠檬酸(CA)对淀粉胶体挤压物特性的影响。1 亲水性胶体对淀粉糊化性质影响亲水性胶体对淀粉糊化性质影响可归因于许多因素,包括淀粉离析物与胶体之间复合作用,水分被溶胀淀粉颗粒吸收导致胶浓度增加及胶体对淀粉颗粒物理性质,如大小、形状、颗粒完整性和颗粒离析物量影响等3。Funami等通过黏度曲线研究不同分子量瓜尔胶对淀粉糊化行为影响,发现Mw大于12.2105瓜尔胶使淀粉体系(5,w/v)糊化起始温度降低,并使峰值黏度增高眩4。Rojas等通过淀粉糊

3、化仪研究几种亲水性胶体对小麦面粉糊化和胶凝性质影响。在小麦面粉(干基)添加0.51胶体基础上,发现当添加1琼脂时,对其起始糊化温度有最显著影响,使其降低3左右。黄原胶和果胶增加糊化稳定性而-卡拉胶和海藻酸盐没有;瓜尔胶和羟丙甲基纤维素增大了体系回生黏度,而海藻酸盐、黄原胶和-卡拉胶却显示相反作用5。Funami等以流变和热分析研究非离子型多糖,如瓜尔胶、卡拉胶、刺槐豆胶和魔芋胶对小麦淀粉糊化和回生行为影响,在每种多糖添加0.5(w/v)情况下,淀粉含量为13(w/v)体系峰值黏度要比不加多糖的对照组高163231个单位,在添加1时,则要高出230437个单位6。Mali等利用Brabender

4、仪也研究不同亲水胶体添加到甘薯淀粉中时糊化曲线变化,结果发现,瓜尔胶对体系黏度影响比黄原胶显著得多,两者都要比不加任何胶的体系黏度大得多7。Chaisawang等利用RVA研究瓜尔胶和黄原胶对木薯原淀粉和其阴离子变性淀粉糊化性质影响,结果发现,在添加胶后,对木薯原淀粉峰值黏度、降落黏度及最终黏度都有增加作用,其中瓜尔胶比黄原胶影响要更为显著些;瓜尔胶增加原淀粉回生黏度,但黄原胶却起负作用,降低原淀粉回生黏度。对阴离子淀粉而言,添加瓜尔胶仍具有与原淀粉相似结果;但添加黄原胶结果却相反。SEM(扫描电镜)显示黄原胶可完全将原淀粉颗粒包裹起来,而瓜尔胶则不能8。Chaisawang等利用RVA,SE

5、M等研究阳离子木薯淀粉在不同胶质中糊化特性,结果发现,黄原胶和瓜尔胶都能协同增加其峰值黏度,但黄原胶-淀粉体系峰值黏度比瓜尔胶为低,起始糊化温度比瓜尔胶高,这是因阳离子木薯淀粉与阴离子黄原胶间强静电作用引起淀粉颗粒瞬时聚集;而非离子型瓜尔胶形成片层结构,并松散包裹淀粉颗粒,因此瓜尔胶使淀粉糊化变得比黄原胶要容易些9。Hongsprabhas等用光学显微镜和共聚焦激光扫描电镜发现10,海藻酸盐和卡拉胶由于保持富含直链淀粉溶胀颗粒的颗粒状结构或促使溶胀颗粒之间发生聚集而影响淀粉与亲水胶体混合体系RVA糊化性质,即增加峰值黏度而降低降落黏度,同时也减小回生黏度。2 亲水性胶体对淀粉胶体挤压物黏度的影

6、响添加剂对黏度的影响如表1所示。添加剂使样品的表观黏度发生变化,亲水性胶体使淀粉胶挤压物的黏度增大,SSL使淀粉-亲水性胶体挤压物的黏度都进一步提高,DATEM也使淀粉-亲水性胶体挤压物的黏度有所增加,而CA降低挤物的黏度。表1 添加剂对挤压物黏度的影响化学试剂热糊黏度(95)/BU冷糊黏度(50)/BU不含胶含瓜尔胶含混合胶不含胶含瓜尔胶含混合胶对照CADATEMSSL15-374654504063052020-411585540551945640注:混合胶为瓜尔胶和阿拉伯胶的混合物阿拉伯胶和瓜尔胶是目前工业中常用的两种食品胶体,用来增加食品的黏度,控制食品的流动性。从表l中可以看出,同时加

7、入瓜尔胶和阿拉伯胶后挤压物的黏度比单独加入瓜尔胶的挤压物黏度高。这可能是由于瓜尔胶和阿拉伯胶的协同作用导致了淀粉胶体挤压物的黏度进一步增加。乳化剂(SSL和DATEM)能够与淀粉颗粒表面发生作用形成水不溶性的混合物, 抵制水分子进入淀粉颗粒内部,阻止淀粉溶胀,从而减少直链淀粉的渗出数量。因此在不加亲水性胶体的条件下,添加了乳化剂后的淀粉挤压物的黏度都测不出来。而在添加亲水性胶体的条件下,乳化剂吸附在亲水性胶体的疏水部分形成一层混合界面膜,使得淀粉中的可溶性成分能够释放出来,从而增加了淀粉胶体挤压物的粘弹性。对于所用的两种乳化剂来说,SSL使淀粉-亲水性胶体挤压物黏度大大提高,而DATEM仅使淀

8、粉-瓜尔胶挤压物的粘度有所提高。这可能是由于SSL在高温下会发生分解,一定程度上破坏了直链淀粉与SSL所形成的水不溶性混合物,使得直链淀粉能够释放出来,从而使淀粉胶体挤压物的黏度增加。而DATEM在高温下较稳定,直链淀粉与DATEM形成的混合物阻止直链淀粉渗出,而使淀粉黏度增加不大,对于淀粉-混合胶挤压物来说,添加了DATEM后,黏度还有所下降。SSL与DATEM对胶体挤压物黏度的不同影响可能与它们的理化性质相关。因为SSL是一种很强的表面活性离子乳化剂,能够在水中形成稳定的晶体胶状结构,其水合能力很强,而DATEM形成薄薄的液态晶膜,限制了其存水中的溶涨。Evans11和Hahn12也曾报道

9、:在低温下,直链淀粉-表面活性剂结合能力很强,直链淀粉渗出很少,而在超过95的高温下,由于颗粒破解或者热力的增加使得有30的直链淀粉渗出。与SSL、DATEM相比,柠檬酸的加入大大降低了淀粉胶的黏度,这是由于在酸性和高温条件下淀粉发生降解所致。图1和图2是添加了SSL、DATEM和CA后,淀粉-瓜尔胶和淀粉-混合胶挤压物的黏度曲线。从图1、图2中看,CA导致聚合物的完全崩溃,淀粉胶黏度大大降低,而添加了DATEM的样品呈现糊化样品的特征曲线,添加了SSL的样品在50(加热10min)出现了一个峰,表明SSL与淀粉形成相互作用使得完整淀粉颗粒受到屏蔽保护,从而避免了在挤压过程中受到破坏。3 添加

10、剂对挤压物延展性的影响延展性足显示样品在挤压过程中空间变化的相关参数。从表2可以看出,添加亲水性胶体降低了淀粉胶体挤压物的延展性。CA明显提高胶体挤压物的延展性,DATEM也有一定的提高作用,而SS则降低其延展性。表2 添加剂对挤压物延展性的影响试剂延展比不含胶含瓜尔胶含混合胶对照6.976.255.95CA4.895.025.35DATEM8.476.607.89SSL11.8313.1010.50造成挤压物延展性降低或增大有很多因素, 包括淀粉类型、直链淀粉含量、支链淀粉的结构及其分子量。加入植物胶后挤压物的延展比减小,这是由于挤压物的粘性增加造成的。Launay和Lisch13报道黏度能

11、够降低淀粉的膨胀体积,加入亲水性胶体后淀粉黏度增大,使得糊化受阻,因此阻止了淀粉溶涨及直链淀粉的释放,从而降低了物质的延展性。 Chinaswamy和Hanna14报道直链淀粉含量增加能够提高淀粉挤压物的延展性。添加 C A提高了的样品延展性,这是由于淀粉在酸性 条件下发生降解,使得淀粉的溶解度增大,直链淀粉的浓度增加所致。添加SSL的样品,由于SSL具有较强的络合性,能够与淀粉形成复合物,阻止了直链淀粉的释放,从而使得样品的延展体积减小。而添加DATEM提高了胶体挤压物的延展性,这有待进一步研究。4 亲水性胶体与淀粉间相互作用可能机理Christianson等15将研究集中在可能与亲水胶体直

12、接发生作用淀粉可溶性组分上,虽简化这一体系,但对进一步深入研究具有一定价值,不过也忽略淀粉颗粒在淀粉/亲水胶体功能性质中所起重要作用,这一体系机械性质不仅与可溶性直链淀粉力学性质有关,且也与溶胀淀粉颗粒数量和硬度有关16。Christianson等15和Christianson认为17,胶体与淀粉颗粒中可溶性直链淀粉间能形成稳定氢键,因此提高混合体系黏度。Shi和BeMiller认为18,淀粉/胶体间相互作用有两种模式可循:模式(A):胶体分子与从淀粉颗粒中离析出直链淀粉分子发生相互作用,并部分粘连在糊化颗粒上;模式(B):胶体分子与析出直链淀粉分子相互作用,通过协同作用使体系黏度上升并抑制回

13、生。但Alloncle等认为19,淀粉/亲水胶体是溶胀淀粉颗粒分散在亲水胶体溶液中形成分散相与连续相这样一个混合体系,淀粉与胶体间协同作用是由于不同大分子间相分离,而不是分子间相互作用。Biliadefis等认为20,单一淀粉凝胶是由充当填充物颗粒分散在直链淀粉水溶液中形成复杂体系,当另一个溶解性差的胶体加入该体系后,其水溶液中必将存在热力学不相容的相分离行为,这一行为使每一组分存在于溶液相互独立微相中,且使该微相中组分浓度激增,因此提高淀粉一胶体体系粘度。Kulicke等,Alloncle和Doublier,Conde-Petit等也均假设淀粉与亲水胶体大分子间存在热力学不相容性2123。此

14、外,Langton和Hermansson认为24,淀粉在糊化过程中颗粒周围会形成直链淀粉薄膜;Mandala等25在马铃薯淀粉/黄原胶体系中观察到这一薄膜,认为该薄膜对颗粒进一步糊化将产生一定影响。Mandala等发现26,黄原胶可促进糊化态小麦淀粉颗粒间互相粘连,使它们相互聚集,并能提高其抗剪切力强度,促进水分子进入其内部和直链淀粉分子析出;析出直链淀粉与黄原胶将会环绕淀粉颗粒形成薄膜,抑制淀粉颗粒进一步溶胀和直链淀粉分子析出;这样又会增大颗粒内压,至一定极限(更高温度)时,使颗粒裂解。参考文献1 Sajijian S U,Rao M R . Effect of Hydrocolloid o

15、n the Rheological Properties of Wheat StarchJ. Carbohydrate Polymer,1987(7):395402.2 Amem E,Collar C. Antistaling Additive,Flour Type and Sour Dough Process. Effect of functionality of wheat doughJ.Journal of Food Science, 1996b,61(12):299303.3 Liu H, Eskin N AM. Interactions of native and acetylate

16、d pea starch with yellow mustard mucilage, locust bean gum and gelatinJ. Food Hydrocolloids, 1998,12(1):3741.4 Funami T. Kataoka Y, Omotoa T, et al. Food hydrocolloids control the gelatinization and retrogradalion behavior of starch.2a.functions of guar gums with different molecular weights on the g

17、elatinization behavior of corn starchJ. FoodHydrocolloids, 2005,19(1):1524.5 Rojas J A, Rosell C M, de Barber C B. Pasting properties of different wheat flour-hydrocolloid systemsJ. Food Hydrocolloids,1999,13(1):2733.6 Funami T, Kataoka Y, Omoto T, et a1. Effects of non-ionic polysaccharides on the

18、gelatinization and retrogradation behavior ofwheat starchJ. Food Hydrocolloids,2005,19(1):113.7 Mali S, Ferrero C, Redigonda V. Influence of pH and hydrocolloids addition on yam(Dioscorea alata)starch pastes stabilityJ. Lebensmittel-Wissenschaft und Technology,2003,36:475481.8 Chaisawang M, Suphanth

19、arika M. Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gumJ. Food Hydrocolloids,2006,20:64l649.9 Chaisawang M, Suphantharika M. Effects of guar gum and xanthan gum additions on physical and theological properties of cationic tapioca sta

20、rchJ.Carbohydrate Polymers,2005,6l:288295.10 Hongsprabhas P, Israkarn K,Rattanawattanaprakit C. Architectural changes of heated mungbean,rice and cassava starch granules:effects of hydrocolloids and protein-containing envelopeJ. Carbohydrate Polymers,In Press,Corrected Proof.11 Evans I D. An Investi

21、gation of Starch/surfactant Interactions Using Viscomietry and Differential Scanning CalorimetryJ.Starch/St?rke,1986,38:227235.12 Hahn D E, Hood L F. Factors Influencing Corn Starch-lipid ComplexingJ. Cereal Chemistry,1986 ,64(2):8185.13 Launay B, Lisch J M. Twin Screw Extrusion of Starches. Flow Be

22、havior of Paste, Expansion and Mechanical Properties of ExtrudatesJ. Journal of food Engineering,1983(2):259.14 Chinnaswamy R,Hanna M A . Relationship Between Amylose Content and Extrusion-expansion Properties of Corn starchJ. Cereal Chemistry,1988,65(2):138143.15 Christianson D D, Hodge J E, Osbome

23、 D, et al. Gelatinization of wheat starch as modified by xanthan gum,guar gum,and cellulose gumJ. Cereal Chemistry,198l,58:513517.16 Bargley E B, Christianson D D. Swelling capacity of starch and its relationship to suspension viscosity-effect of cooking time,temperature and concentrationJ. Journal

24、of Texture Studies,1982,13:115126.17 Christianson D D. Hydrocolloid interactions with starchesM.Westport:AVI Publishing Company,1982.18 Shi Xa B, J N. Effects of food gllms on viscosities of starch suspensions during pastingJ. Carbohydrate Polymers,2002,50(1):718.19 Alloncle M, Lefebvre J, Llamas G,

25、 et a1. A rheologieal characterization of cereal starch-galactomannan mixturesJ.Cereal Chemistry,1989,66(2):9093.20 Liaderis C G A, zrdorczyk M S, rokopowich D J. Effect of hydrocolloids on gelatinization and structure formation in concentrated waxy maize and wheat starch gelsJ. Starch/St?rke,1997,4

26、9(78):278283.21 Kulicke W M, Kath E D, Kix M F, et a1. Hydrocolloids and rheology:regulation of visco-elastic characteristics of waxy rice starch in mixtures with galactomannansJ. Starch,1996,48(3):105114.22 Alioncle M, Doublier J L. Viscoelastic properties of maize starch/hydrocolloid pastes and ge

27、lsJ. Food Hydrocolloids,199l,(5):455467.23 Conde-Petit B, Pfirter A, Escher F. Influence of xanthan on the rheological properties of aqueous starch-emulsifier systemsJ.Food Hydrocolloids,l997,(11):393399.24 Langton M, Hermansson A M. Microstructural changes in wheat starch dispersions during heating

28、 and coolingJ. Food Microstructure,1989,(8):2939.25Mandala I G, Palogou E D, Kostaropoulos A E. Influence of preparation and storage conditions on texture of xanthan-starch mixturesJ.JouruaI of Food Engineering,2002,53:2738.26 Mandala I G, Bayas E. Xanthan effect on swelling,solubility and viscosity of wheat starch dispersionsJ,Food Hydrocolloids,2004,18(2):19l201.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1