ImageVerifierCode 换一换
格式:DOCX , 页数:28 ,大小:495.85KB ,
资源ID:10597754      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10597754.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(RS422和RS485应用中英文翻译.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

RS422和RS485应用中英文翻译.docx

1、RS422和RS485应用中英文翻译毕业设计说明书外文文献及中文翻译学生姓名: 学号: 学 院: 系 名: 电子与计算机科学技术系 专 业: 电子科学与技术 指导教师: 2011 年 6月RS-422 and RS-485 application noteChapter 1: OverviewIntroduction The purpose of this application note is to describe the main elements of an RS-422 and RS-485 system. This application note attempts to cove

2、r enough technical details so that the system designer will have considered all the important aspects in his data system design. Since both RS-422 and RS-485 are data transmission systems that use balanced differential signals, it is appropriate to discuss both systems in the same application note.

3、Throughout this application note the generic terms of RS-422 and RS-485 will be used to represent the EIA/TIA-422 and EIA/TIA-485 Standards.Data Transmission Signals Unbalanced Line Drivers Each signal that transmits in an RS-232 unbalanced data transmission system appears on the interface connector

4、 as a voltage with reference to a signal ground. For example, the transmitted data (TD) from a DTE device appears on pin 2 with respect to pin 7 (signal ground) on a DB-25 connector. This voltage will be negative if the line is idle and alternate between that negative level and a positive level when

5、 data is sent with a magnitude of 5 to 15 volts. The RS-232 receiver typically operates within the voltage range of +3 to +12 and -3 to -12 volts as shown in Figure 1.1. Figure 1.1: RS-232 Interface CircuitBalanced Line DriversIn a balanced differential system the voltage produced by the driver appe

6、ars across a pair of signal lines that transmit only one signal. Figure 1.2 shows a schematic symbol for a balanced line driver and the voltages that exist. A balanced line driver will produce a voltage from 2 to 6 volts across its A and B output terminals and will have a signal ground (C) connectio

7、n. Although proper connection to the signal ground is important, it isnt used by a balanced line receiver in determining the logic state of the data line. A balanced line driver can also have an input signal called an “Enable” signal. The purpose of this signal is to connect the driver to its output

8、 terminals, A and B. If the “Enable” signal is OFF, one can consider the driver as disconnected from the transmission line. An RS-485 driver must have the “Enable” control signal. An RS-422 driver may have this signal, but it is not always required. The disconnected or disabled condition of the line

9、 driver usually is referred to as the “tristate1” condition of the driver.1The term “tristate” comes from the fact that there is a third output state of an RS-485 driver, in addition to the output states of “1” and “0.”Figure 1.2: Balanced Differential Output Line DriverBalanced Line ReceiversA bala

10、nced differential line receiver senses the voltage state of the transmission line across two signal input lines, A and B. It will also have a signal ground (C) that is necessary in making the proper interface connection. Figure 1.3 is a schematic symbol for a balanced differential line receiver. Fig

11、ure 1.3 also shows the voltages that are important to the balanced line receiver. If the differential input voltage Vab is greater than +200 mV the receiver will have a specific logic state on its output terminal. If the input voltage is reversed to less than -200 mV the receiver will create the opp

12、osite logic state on its output terminal. The input voltages that a balanced line receiver must sense are shown in Figure 1.3. The 200 mV to 6 V range is required to allow for attenuation on the transmission line.Figure 1.3: Balanced Differential Input Line ReceiverEIA Standard RS-422 Data Transmiss

13、ionThe EIA Standard RS-422-A entitled “Electrical Characteristics of Balanced Voltage Digital Interface Circuits” defines the characteristics of RS-422 interface circuits. Figure 1.4 is a typical RS-422 four-wire interface. Notice that five conductors are used. Each generator or driver can drive up

14、to ten (10) receivers. The two signaling states of the line are defined as follows:a. When the “A” terminal of the driver is negative with respect to the “B” terminal, the line is in a binary 1 (MARK or OFF) state.b. When the “A” terminal of the driver is positive with respect to the “B” terminal, t

15、he line is in a binary 0 (SPACE or ON) state.Figure 1.5 shows the condition of the voltage of the balanced line for an RS-232 to RS-422 converter when the line is in the “idle” condition or OFF state. It also shows the relationship of the “A” and “B” terminals of an RS-422 system and the “-“ and “+”

16、 terminal markings used on many types of equipment. The “A” terminal is equivalent to the “-“ designation, and the “B” terminal equivalent to the “+” designation. The same relationship shown in Figure 1.5 also applies for RS-485 systems. RS-422 can withstand a common mode voltage (Vcm) of 7 volts.Co

17、mmon mode voltage is defined as the mean voltage of the A and B terminals with respect to signal ground.Figure 1.4: Typical RS-422 Four Wire NetworkFigure 1.5: Relationship between EIA Standard “A” and “B” terminals on an RS-422 or RS-485 Deviceand “+”and “-” Identification ConventionNOTE: Under “id

18、le” conditions it is possible to determine which terminal is “A” and which is “B”.EIA Standard RS-485 Data TransmissionThe RS-485 Standard permits a balanced transmission line to be shared in a party line or multidrop mode.As many as 32 driver/receiver pairs can share a multidrop network. Many chara

19、cteristics of the drivers and receivers are the same as RS-422. The range of the common mode voltage Vcm that the driver and receiver can tolerate is expanded to +12 to -7 volts. Since the driver can be disconnected or tristated from the line, it must withstand this common mode voltage range while i

20、n the tristate condition.Some RS-422 drivers, even with tristate capability, will not withstand the full Vcm voltage range of +12 to -7 volts.Figure 1.6 shows a typical two-wire multidrop network.Note that the transmission line is terminated on both ends of the line but not at drop points in the mid

21、dle of the line. Termination should only be used with high data rates and long wiring runs. A detailed discussion of termination can be found in Chapter 2 of this application note. The signal ground line is also recommended in an RS-485 system to keep the common mode voltage that the receiver must a

22、ccept within the -7 to +12 volt range. Further discussion of grounding can be found in Chapter 3 of this application note.Figure 1.6: typical RS-485 two wire multidrop networkAn RS-485 network can also be connected in a four-wire mode as shown in Figure 1.7. Note that four data wires and an addition

23、al signal ground wire are used in a “four-wire” connection. In a four-wire network it is necessary that one node be a master node and all others be slaves. The network is connected so that the master node communicates to all slave nodes. All slave nodes communicate only with the master node. This ne

24、twork has some advantages with equipment with mixed protocol communications. Since the slave nodes never listen to another slave response to the master, a slave node cannot reply incorrectly to another slave node.Figure 1.7: typical RS-485 four wire multidrop networkTristate Control of an RS-485 Dev

25、ice using RTSAs discussed previously, an RS-485 system must have a driver that can be disconnected from the transmission line when a particular node is not transmitting. In an RS-232 to RS-485 converter or an RS-485 serial card, this may be implemented using the RTS control signal from an asynchrono

26、us serial port to enable the RS-485 driver. The RTS line is connected to the RS-485 driver enable such that setting the RTS line to a high (logic 1) state enables the RS-485 driver. Setting the RTS line low (logic 0) puts the driver into the tristate condition.This in effect disconnects the driver f

27、rom the bus, allowing other nodes to transmit over the same wire pair. Figure 1.8 shows a timing diagram for a typical RS-232 to RS-485 converter. The waveforms show what happens if the VRTS waveform is narrower than the data VSD. This is not the normal situation, but is shown here to illustrate the

28、 loss of a portion of the data waveform. When RTS control is used, it is important to be certain that RTS is set high before data is sent. Also, the RTS line must then be set low after the last data bit is sent. This timing is done by the software used to control the serial port and not by the conve

29、rter.Figure 1.8: Timing Diagram for RS-232 to RS-485 Converter with RTS Control of RS-485 Driver and ReceiverNote: 1 .Voltage here is determined by other devices on the line 2 .All peak values of voltages are approximateWhen an RS-485 network is connected in a two-wire multidrop party line mode, the

30、 receiver at each node will be connected to the line (see Figure 1.6). The receiver can often be configured to receive an echo of its own data transmission. This is desirable in some systems, and troublesome in others. Be sure to check the data sheet for your converter to determine how the receiver

31、“enable” function is connected.Figure 1.9 - Timing Diagram for RS-232 to RS-485 Converter with Send Data (SD) Control of RS-485 Driver and ReceiverNote: 1. Voltage here is determined by other devices on the line .2. This timing interval determined by components in timing circuit. The start of this i

32、nterval is determined by the leading edge of each data bit .3 . All peak values of voltages are approximate.Chapter 2: System ConfigurationNetwork TopologiesNetwork configuration isnt defined in the RS-422 or RS-485 specification. In most cases the designer can use a configuration that best fits the physical requirements of the system.Two Wire or Four Wire SystemsRS-422 systems require a dedicated pair of wires for each signal, a transmit pair, a receive pair and an additional pair for each handshake/control signal used (if required). Th

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1