ImageVerifierCode 换一换
格式:DOCX , 页数:33 ,大小:174.31KB ,
资源ID:10505879      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10505879.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(4一个经典的多线程同步问题.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

4一个经典的多线程同步问题.docx

1、4一个经典的多线程同步问题一个经典的多线程同步问题 程序描述:主线程启动10个子线程并将表示子线程序号的变量地址作为参数传递给子线程。子线程接收参数 - sleep(50) - 全局变量+ - sleep(0) - 输出参数和全局变量。要求:1子线程输出的线程序号不能重复。2全局变量的输出必须递增。下面画了个简单的示意图:分析下这个问题的考察点,主要考察点有二个:1主线程创建子线程并传入一个指向变量地址的指针作参数,由于线程启动须要花费一定的时间,所以在子线程根据这个指针访问并保存数据前,主线程应等待子线程保存完毕后才能改动该参数并启动下一个线程。这涉及到主线程与子线程之间的同步。2子线程之间

2、会互斥的改动和输出全局变量。要求全局变量的输出必须递增。这涉及到各子线程间的互斥。下面列出这个程序的基本框架,可以在此代码基础上进行修改和验证。/经典线程同步互斥问题#include #include #include long g_nNum; /全局资源unsigned int _stdcall Fun(void *pPM); /线程函数const int THREAD_NUM = 10; /子线程个数int main() g_nNum = 0; HANDLE handleTHREAD_NUM; int i = 0; while (i THREAD_NUM) handlei = (HANDL

3、E)_beginthreadex(NULL, 0, Fun, &i, 0, NULL); i+;/等子线程接收到参数时主线程可能改变了这个i的值 /保证子线程已全部运行结束 WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE); return 0;unsigned int _stdcall Fun(void *pPM) /由于创建线程是要一定的开销的,所以新线程并不能第一时间执行到这来 int nThreadNum = *(int *)pPM; /子线程获取参数 Sleep(50);/some work should to do

4、g_nNum+; /处理全局资源 Sleep(0);/some work should to do printf(线程编号为%d 全局资源值为%dn, nThreadNum, g_nNum); return 0;运行结果:可以看出,运行结果完全是混乱和不可预知的。运用Windows平台下各种手段包括关键段,事件,互斥量,信号量等等来解决这个问题。关键段CRITICAL_SECTION首先介绍下如何使用关键段,然后再深层次的分析下关键段的实现机制与原理。关键段CRITICAL_SECTION一共就四个函数,使用很是方便。下面是这四个函数的原型和使用说明。函数功能:初始化函数原型:void Ini

5、tializeCriticalSection(LPCRITICAL_SECTION lpCriticalSection);函数说明:定义关键段变量后必须先初始化。函数功能:销毁函数原型:void DeleteCriticalSection(LPCRITICAL_SECTION lpCriticalSection);函数说明:用完之后记得销毁。函数功能:进入关键区域函数原型:void EnterCriticalSection(LPCRITICAL_SECTION lpCriticalSection);函数说明:系统保证各线程互斥的进入关键区域。函数功能:离开关关键区域函数原型:void Leav

6、eCriticalSection(LPCRITICAL_SECTION lpCriticalSection);然后在经典多线程问题中设置二个关键区域。一个是主线程在递增子线程序号时,另一个是各子线程互斥的访问输出全局资源时。详见代码:#include #include #include long g_nNum;unsigned int _stdcall Fun(void *pPM);const int THREAD_NUM = 10;/关键段变量声明CRITICAL_SECTION g_csThreadParameter, g_csThreadCode;int main() printf(经典

7、线程同步-关键段n); /关键段初始化 InitializeCriticalSection(&g_csThreadParameter); InitializeCriticalSection(&g_csThreadCode); HANDLE handleTHREAD_NUM; g_nNum = 0; int i = 0; while (i UniqueThread HANDLE LockSemaphore; DWORD SpinCount; RTL_CRITICAL_SECTION, *PRTL_CRITICAL_SECTION;各个参数的解释如下:第一个参数:PRTL_CRITICAL_SEC

8、TION_DEBUGDebugInfo;调试用的。第二个参数:LONG LockCount;初始化为-1,n表示有n个线程在等待。第三个参数:LONG RecursionCount; 表示该关键段的拥有线程对此资源获得关键段次数,初为0。第四个参数:HANDLE OwningThread; 即拥有该关键段的线程句柄,微软对其注释为from the threads ClientId-UniqueThread第五个参数:HANDLELockSemaphore; 实际上是一个自复位事件。第六个参数:DWORDSpinCount; 旋转锁的设置,单CPU下忽略由这个结构可以知道关键段会记录拥有该关键段

9、的线程句柄即关键段是有“线程所有权”概念的。事实上它会用第四个参数OwningThread来记录获准进入关键区域的线程句柄,如果这个线程再次进入,EnterCriticalSection()会更新第三个参数RecursionCount以记录该线程进入的次数并立即返回让该线程进入。其它线程调用EnterCriticalSection()则会被切换到等待状态,一旦拥有线程所有权的线程调用LeaveCriticalSection()使其进入的次数为0时,系统会自动更新关键段并将等待中的线程换回可调度状态。因此可以将关键段比作旅馆的房卡,调用EnterCriticalSection()即申请房卡,得到

10、房卡后自己当然是可以多次进出房间的,在你调用LeaveCriticalSection()交出房卡之前,别人自然是无法进入该房间。回到这个经典线程同步问题上,主线程正是由于拥有“线程所有权”即房卡,所以它可以重复进入关键代码区域从而导致子线程在接收参数之前主线程就已经修改了这个参数。所以关键段可以用于线程间的互斥,但不可以用于同步。另外,由于将线程切换到等待状态的开销较大,因此为了提高关键段的性能,Microsoft将旋转锁合并到关键段中,这样EnterCriticalSection()会先用一个旋转锁不断循环,尝试一段时间才会将线程切换到等待状态。下面是配合了旋转锁的关键段初始化函数函数功能:

11、初始化关键段并设置旋转次数函数原型:BOOL InitializeCriticalSectionAndSpinCount( LPCRITICAL_SECTION lpCriticalSection, DWORD dwSpinCount);函数说明:旋转次数一般设置为4000。函数功能:修改关键段的旋转次数函数原型:DWORD SetCriticalSectionSpinCount( LPCRITICAL_SECTION lpCriticalSection, DWORD dwSpinCount);Windows核心编程第五版的第八章推荐在使用关键段的时候同时使用旋转锁,这样有助于提高性能。值得注

12、意的是如果主机只有一个处理器,那么设置旋转锁是无效的。无法进入关键区域的线程总会被系统将其切换到等待状态。最后总结下关键段:1关键段共初始化化、销毁、进入和离开关键区域四个函数。2关键段可以解决线程的互斥问题,但因为具有“线程所有权”,所以无法解决同步问题。3推荐关键段与旋转锁配合使用。事件Event 使用关键段来解决经典的多线程同步互斥问题,由于关键段的“线程所有权”特性所以关键段只能用于线程的互斥而不能用于同步。本篇介绍用事件Event来尝试解决这个线程同步问题。首先介绍下如何使用事件。事件Event实际上是个内核对象,它的使用非常方便。下面列出一些常用的函数。第一个 CreateEven

13、t函数功能:创建事件函数原型:HANDLE CreateEvent(LPSECURITY_ATTRIBUTES lpEventAttributes,BOOL bManualReset,BOOL bInitialState,LPCTSTR lpName);函数说明:第一个参数表示安全控制,一般直接传入NULL。第二个参数确定事件是手动置位还是自动置位,传入TRUE表示手动置位,传入FALSE表示自动置位。如果为自动置位,则对该事件调用WaitForSingleObject()后会自动调用ResetEvent()使事件变成未触发状态。打个小小比方,手动置位事件相当于教室门,教室门一旦打开(被触发)

14、,所以有人都可以进入直到老师去关上教室门(事件变成未触发)。自动置位事件就相当于医院里拍X光的房间门,门打开后只能进入一个人,这个人进去后会将门关上,其它人不能进入除非门重新被打开(事件重新被触发)。第三个参数表示事件的初始状态,传入TRUR表示已触发。第四个参数表示事件的名称,传入NULL表示匿名事件。第二个 OpenEvent函数功能:根据名称获得一个事件句柄。函数原型:HANDLE OpenEvent(DWORD dwDesiredAccess,BOOL bInheritHandle,LPCTSTR lpName /名称);函数说明:第一个参数表示访问权限,对事件一般传入EVENT_AL

15、L_ACCESS。详细解释可以查看MSDN文档。第二个参数表示事件句柄继承性,一般传入TRUE即可。第三个参数表示名称,不同进程中的各线程可以通过名称来确保它们访问同一个事件。第三个SetEvent函数功能:触发事件函数原型:BOOL SetEvent(HANDLEhEvent);函数说明:每次触发后,必有一个或多个处于等待状态下的线程变成可调度状态。第四个ResetEvent函数功能:将事件设为末触发函数原型:BOOL ResetEvent(HANDLEhEvent);最后一个事件的清理与销毁由于事件是内核对象,因此使用CloseHandle()就可以完成清理与销毁了。在经典多线程问题中设置

16、一个事件和一个关键段。用事件处理主线程与子线程的同步,用关键段来处理各子线程间的互斥。详见代码:#include #include #include long g_nNum;unsigned int _stdcall Fun(void *pPM);const int THREAD_NUM = 10;/事件与关键段HANDLE g_hThreadEvent;CRITICAL_SECTION g_csThreadCode;int main() printf(经典线程同步事件Eventn); /初始化事件和关键段自动置位,初始无触发的匿名事件 g_hThreadEvent = CreateEvent

17、(NULL, FALSE, FALSE, NULL); InitializeCriticalSection(&g_csThreadCode); HANDLE handleTHREAD_NUM; g_nNum = 0; int i = 0; while (i THREAD_NUM) handlei = (HANDLE)_beginthreadex(NULL, 0, Fun, &i, 0, NULL); ResetEvent(g_hThreadEvent); WaitForSingleObject(g_hThreadEvent, INFINITE); /等待事件被触发 i+; WaitForMul

18、tipleObjects(THREAD_NUM, handle, TRUE, INFINITE); /销毁事件和关键段 CloseHandle(g_hThreadEvent); DeleteCriticalSection(&g_csThreadCode); return 0;unsigned int _stdcall Fun(void *pPM) int nThreadNum = *(int *)pPM; /SetEvent(g_hThreadEvent); /触发事件 Sleep(50);/some work should to do EnterCriticalSection(&g_csTh

19、readCode); g_nNum+; Sleep(0);/some work should to do printf(线程编号为%d 全局资源值为%dn, nThreadNum, g_nNum); LeaveCriticalSection(&g_csThreadCode);SetEvent(g_hThreadEvent); return 0;运行结果:可以看出来,经典线线程同步问题已经圆满的解决了线程编号的输出没有重复,说明主线程与子线程达到了同步。全局资源的输出是递增的,说明各子线程已经互斥的访问和输出该全局资源。现在我们知道了如何使用事件,但学习就应该要深入的学习,何况微软给事件还提供了

20、PulseEvent()函数,所以接下来再继续深挖下事件Event,看看它还有什么秘密没。先来看看这个函数的原形:第五个PulseEvent函数功能:将事件触发后立即将事件设置为未触发,相当于触发一个事件脉冲。函数原型:BOOL PulseEvent(HANDLEhEvent);函数说明:这是一个不常用的事件函数,此函数相当于SetEvent()后立即调用ResetEvent();此时情况可以分为两种:1.对于手动置位事件,所有正处于等待状态下线程都变成可调度状态。2.对于自动置位事件,所有正处于等待状态下线程只有一个变成可调度状态。此后事件是末触发的。该函数不稳定,因为无法预知在调用Puls

21、eEvent ()时哪些线程正处于等待状态。 下面对这个触发一个事件脉冲PulseEvent ()写一个例子,主线程启动7个子线程,其中有5个线程Sleep(10)后对一事件调用等待函数(称为快线程),另有2个线程Sleep(100)后也对该事件调用等待函数(称为慢线程)。主线程启动所有子线程后再Sleep(50)保证有5个快线程都正处于等待状态中。此时若主线程触发一个事件脉冲,那么对于手动置位事件,这5个线程都将顺利执行下去。对于自动置位事件,这5个线程中会有中一个顺利执行下去。而不论手动置位事件还是自动置位事件,那2个慢线程由于Sleep(100)所以会错过事件脉冲,因此慢线程都会进入等待

22、状态而无法顺利执行下去。代码如下:/使用PluseEvent()函数#include #include #include #include HANDLE g_hThreadEvent;/快线程unsigned int _stdcall FastThreadFun(void *pPM) Sleep(10); /用这个来保证各线程调用等待函数的次序有一定的随机性 printf(%s 启动n, (PSTR)pPM); WaitForSingleObject(g_hThreadEvent, INFINITE); printf(%s 等到事件被触发顺利结束n, (PSTR)pPM); return 0;

23、/慢线程unsigned int _stdcall SlowThreadFun(void *pPM) Sleep(100); printf(%s 启动n, (PSTR)pPM); WaitForSingleObject(g_hThreadEvent, INFINITE); printf(%s 等到事件被触发顺利结束n, (PSTR)pPM); return 0;int main() printf(使用PluseEvent()函数n); BOOL bManualReset = FALSE; /创建事件第二个参数手动置位TRUE,自动置位FALSE g_hThreadEvent = CreateE

24、vent(NULL, bManualReset, FALSE, NULL); if (bManualReset = TRUE) printf(当前使用手动置位事件n); else printf(当前使用自动置位事件n); char szFastThreadName530 = 快线程, 快线程, 快线程, 快线程, 快线程; char szSlowThreadName230 = 慢线程, 慢线程; int i; for (i = 0; i 5; i+) _beginthreadex(NULL, 0, FastThreadFun, szFastThreadNamei, 0, NULL); for

25、(i = 0; i 2; i+) _beginthreadex(NULL, 0, SlowThreadFun, szSlowThreadNamei, 0, NULL); Sleep(50); /保证快线程已经全部启动 printf(现在主线程触发一个事件脉冲- PulseEvent()n); PulseEvent(g_hThreadEvent);/调用PulseEvent()就相当于同时调用下面二句 /SetEvent(g_hThreadEvent); /ResetEvent(g_hThreadEvent); Sleep(3000); printf(时间到,主线程结束运行n); CloseHandle(g_hThreadEvent); return 0;运行结果:手动置位代码int main() printf(使用PluseEvent()函数n); BOOL bManualReset = TRUE; /创建事件第二个参数手动置位TRUE,自动置位FALSE g_hThreadEvent = CreateEvent(NULL, bManualReset, FALSE,

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1