1、mosfet原理要点第一章 mosfet基础知识自1976年开发出功率MOSFET以来,由于半导体工艺技术的发展,它的性能不断提高:如高压功率MOSFET其工作电压可达1000V;低导通电阻MOSFET其阻值仅lOm;工作频率范围从直流到达数兆赫;保护措施越来越完善;并开发出各种贴片式功率MOSFET(如SILIConix最近开发的厚度为1.5mm“Little Foot系列)。另外,价格也不断降低,使应用越来越广泛,不少地方取代双极型晶体管。功率MOSFET主要用于计算机外设(软、硬驱动器、打印机、绘图机)、电源(ACDC变换器、DCDC变换器)、汽车电子、音响电路及仪器、仪表等领域。什么是
2、MOSFET“MOSFET”是英文MetalOxide SemiCoductor Field Effect Transistor的缩写,译成中文是“金属氧化物半导体场效应管”。它是由金属、氧化物(SiO2或SiN)及半导体三种材料制成的器件。所谓功率MOSFET(Power MOSFET)是指它能输出较大的工作电流(几安到几十安),用于功率输出级的器件。MOSFET的结构图1是典型平面N沟道增强型MOSFET的剖面图。它用一块P型硅半导体材料作衬底(图la),在其面上扩散了两个N型区(图lb),再在上面覆盖一层二氧化硅(SiQ2)绝缘层(图lc),最后在N区上方用腐蚀的方法做成两个孔,用金属化
3、的方法分别在绝缘层上及两个孔内做成三个电极:G(栅极)、S(源极)及D(漏极),如图1d所示。从图1中可以看出栅极G与漏极D及源极S是绝缘的,D与S之间有两个PN结。一般情况下,衬底与源极在内部连接在一起。图1是N沟道增强型MOSFET的基本结构图。为了改善某些参数的特性,如提高工作电流、提高工作电压、降低导通电阻、提高开关特性等有不同的结构及工艺,构成所谓VMOS、DMOS、TMOS等结构。图2是一种N沟道增强型功率MOSFET的结构图。虽然有不同的结构,但其工作原理是相同的,这里就不一一介绍了。MOSFET的工作原理要使增强型N沟道MOSFET工作,要在G、S之间加正电压VGS及在D、S之
4、间加正电压VDS,则产生正向工作电流ID。改变VGS的电压可控制工作电流ID。如图3所示。若先不接VGS(即VGS0),在D与S极之间加一正电压VDS,漏极D与衬底之间的PN结处于反向,因此漏源之间不能导电。如果在栅极G与源极S之间加一电压VGS。此时可以将栅极与衬底看作电容器的两个极板,而氧化物绝缘层作为电容器的介质。当加上VGS时,在绝缘层和栅极界面上感应出正电荷,而在绝缘层和P型衬底界面上感应出负电荷(如图3)。这层感应的负电荷和P型衬底中的多数载流子(空穴)的极性相反,所以称为“反型层”,这反型层有可能将漏与源的两N型区连接起来形成导电沟道。当VGS电压太低时,感应出来的负电荷较少,它
5、将被P型衬底中的空穴中和,因此在这种情况时,漏源之间仍然无电流ID。当VGS增加到一定值时,其感应的负电荷把两个分离的N区沟通形成N沟道,这个临界电压称为开启电压(或称阈值电压、门限电压),用符号VT表示(一般规定在ID10uA时的VGS作为VT)。当VGS继续增大,负电荷增加,导电沟道扩大,电阻降低,ID也随之增加,并且呈较好线性关系,如图4所示。此曲线称为转换特性。因此在一定范围内可以认为,改变VGS来控制漏源之间的电阻,达到控制ID的作用。由于这种结构在VGS0时,ID0,称这种MOSFET为增强型。另一类MOSFET,在VGS0时也有一定的ID(称为IDSS),这种MOSFET称为耗尽
6、型。它的结构如图5所示,它的转移特性如图6所示。VP为夹断电压(ID0)。耗尽型与增强型主要区别是在制造SiO2绝缘层中有大量的正离子,使在P型衬底的界面上感应出较多的负电荷,即在两个N型区中间的P型硅内形成一N型硅薄层而形成一导电沟道,所以在VGS0时,有VDS作用时也有一定的ID(IDSS);当VGS有电压时(可以是正电压或负电压),改变感应的负电荷数量,从而改变ID的大小。VP为ID0时的-VGS,称为夹断电压。除了上述采用P型硅作衬底形成N型导电沟道的N沟道MOSFET外,也可用N型硅作衬底形成P型导电沟道的P沟道MOSFET。这样,MOSFET的分类如图7所示。耗尽型:N沟道(图7a
7、);P沟道(图c);增强型:N沟道(图b);P沟道(图d)。为防止MOSFET接电感负载时,在截止瞬间产生感应电压与电源电压之和击穿MOSFET,一般功率MOSFET在漏极与源极之间内接一个快速恢复二极管,如图8所示功率MOSFET的特点功率MOSFET与双极型功率管相比具有如下特点:1MOSFET是电压控制型器件(双极型是电流控制型器件),因此在驱动大电流时无需推动级,电路较简单;2输入阻抗高,可达108以上;3工作频率范围宽,开关速度高(开关时间为几十纳秒到几百纳秒),开关损耗小;4有较优良的线性区,并且MOSFET的输入电容比双极型的输入电容小得多,所以它的交流输入阻抗极高;噪声也小,最
8、合适制作HI-FI音响;5功率MOSFET可以多个并联使用,增加输出电流而无需均流电阻。典型应用电路1电池反接保护电路电池反接保护电路如图9所示。一般防止电池接反损坏电路采用串接二极管的方法,在电池接反时,PN结反接无电压降,但在正常工 作时有0.60.7V的管压降。采用导通电阻低的增强型N沟道MOSFET具有极小的管压降(RDS(ON)ID),如Si9410DY的RDS(ON)约为0.04,则在lA时约为0.04V。这时要注意在电池正确安装时,ID并非完全通过管内的二极管,而是在VGS5V时,N导电沟道畅通(它相当于一个极小的电阻)而大部分电流是从S流向D的(ID为负)。而当电池装反时,MO
9、SFET不通,电路得以保护。2触摸调光电路一种简单的触摸调光电路如图10。当手指触摸上触头时,电容经手指电阻及100k充电,VGS渐增大,灯渐亮;当触摸下触头时,电容经100k及手指电阻放电,灯渐暗到灭。3甲类功率放大电路由R1、R2建立VGS静态工作点(此时有一定的ID流过)。当音频信号经过C1耦合到栅极,使产生-VGS,则产生较大的ID,经输出变压器阻抗匹配,使48喇叭输出较大的声功率。图ll中Dw为9V稳压二极管,是保护G、S极以免输入过高电压而击穿。从图中也可以看出,偏置电阻的数值较大,因为栅极输入阻抗极高,并且无栅流。第二章MOSFET管选择技巧鉴于MOSFET技术的成熟,为设计选择
10、一款MOSFET表面上看是十分简单的事情。虽然工程师都熟谙MOSFET数据手册上的品质因数,但为了选择出合适的MOSFET,工程师必需利用自己的专业知识对各个具体应用的不同规格进行全面仔细的考虑。例如,对于服务器电源中的负载开关这类应用,由于MOSFET基本上一直都是处于导通状态,故MOSFET的开关特性无关紧要,而导通阻抗(RDS(ON)却可能是这种应用的关键品质因数。然而,仍然有一些应用,比如开关电源,把MOSFET用作有源开关,因此工程师必须评估其它的MOSFET性能参数。下面让我们考虑一些应用及其MOSFET规格参数的优先顺序。MOSFET最常见的应用可能是电源中的开关元件,此外,它们
11、对电源输出也大有裨益。服务器和通信设备等应用一般都配置有多个并行电源,以支持N+1 冗余与持续工作 (图 1)。各并行电源平均分担负载,确保系统即使在一个电源出现故障的情况下仍然能够继续工作。不过,这种架构还需要一种方法把并行电源的输出连接在一起,并保证某个电源的故障不会影响到其它的电源。在每个电源的输出端,有一个功率MOSFET可以让众电源分担负载,同时各电源又彼此隔离 。起这种作用的MOSFET 被称为ORingFET,因为它们本质上是以 OR 逻辑来连接多个电源的输出。图1:用于针对N+1冗余拓扑的并行电源控制的MOSFET。在ORing FET应用中,MOSFET的作用是开关器件,但是
12、由于服务器类应用中电源不间断工作,这个开关实际上始终处于导通状态。其开关功能只发挥在启动和关断,以及电源出现故障之时 。 相比从事以开关为核心应用的设计人员,ORing FET应用设计人员显然必需关注MOSFET的不同特性。以服务器为例,在正常工作期间,MOSFET只相当于一个导体。因此,ORing FET应用设计人员最关心的是最小传导损耗。低RDS(ON)可把BOM及PCB尺寸降至最小 一般而言,MOSFET 制造商采用RDS(ON) 参数来定义导通阻抗;对ORing FET应用来说,RDS(ON) 也是最重要的器件特性。数据手册定义RDS(ON) 与栅极 (或驱动) 电压 VGS 以及流经
13、开关的电流有关,但对于充分的栅极驱动,RDS(ON) 是一个相对静态参数。例如,飞兆半导体 FDMS7650 的数据手册规定,对于10V 的栅极驱动,最大RDS(ON) 为0.99 m。 若设计人员试图开发尺寸最小、成本最低的电源,低导通阻抗更是加倍的重要。在电源设计中,每个电源常常需要多个ORing MOSFET并行工作,需要多个器件来把电流传送给负载。在许多情况下,设计人员必须并联MOSFET,以有效降低RDS(ON)。 需谨记,在 DC 电路中,并联电阻性负载的等效阻抗小于每个负载单独的阻抗值。比如,两个并联的2 电阻相当于一个1的电阻 。因此,一般来说,一个低RDS(ON) 值的MOS
14、FET,具备大额定电流,就可以让设计人员把电源中所用MOSFET的数目减至最少。 除了RDS(ON)之外,在MOSFET的选择过程中还有几个MOSFET参数也对电源设计人员非常重要。许多情况下,设计人员应该密切关注数据手册上的安全工作区(SOA)曲线,该曲线同时描述了漏极电流和漏源电压的关系。基本上,SOA定义了MOSFET能够安全工作的电源电压和电流。在ORing FET应用中,首要问题是:在完全导通状态下FET的电流传送能力。实际上无需SOA曲线也可以获得漏极电流值。再以FDMS7650为例,该器件的额定电流为36A,故非常适用于服务器应用中所采用的典型DC-DC电源。若设计是实现热插拔功
15、能,SOA曲线也许更能发挥作用。在这种情况下,MOSFET需要部分导通工作。SOA曲线定义了不同脉冲期间的电流和电压限值。 注意刚刚提到的额定电流,这也是值得考虑的热参数,因为始终导通的MOSFET很容易发热。另外,日渐升高的结温也会导致RDS(ON)的增加。MOSFET数据手册规定了热阻抗参数,其定义为MOSFET封装的半导体结散热能力。RJC的最简单的定义是结到管壳的热阻抗。细言之,在实际测量中其代表从器件结(对于一个垂直MOSFET,即裸片的上表面附近)到封装外表面的热阻抗,在数据手册中有描述。若采用PowerQFN封装,管壳定义为这个大漏极片的中心。因此,RJC 定义了裸片与封装系统的
16、热效应。RJA 定义了从裸片表面到周围环境的热阻抗,而且一般通过一个脚注来标明与PCB设计的关系,包括镀铜的层数和厚度。 总而言之,RJC在电源设计团队的控制范围以外,因为它是由所采用的器件封装技术决定。先进的热性能增强型封装,比如飞兆半导体的Power 56,其RJC 规格在1 和 2 oC/W之间,FDMS7650 的规格为 1.2 oC/W。设计团队可以通过PCB设计来改变 RJA 。最终,一个稳健的热设计有助于提高系统可靠性, 延长系统平均无故障时间(MTBF)。开关电源中的MOSFET 现在让我们考虑开关电源应用,以及这种应用如何需要从一个不同的角度来审视数据手册。从定义上而言,这种
17、应用需要MOSFET定期导通和关断。同时,有数十种拓扑可用于开关电源,这里考虑一个简单的例子。DC-DC电源中常用的基本降压转换器依赖两个MOSFET来执行开关功能(图 2)。 这些开关交替在电感里存储能量,然后把能量释放给负载。目前,设计人员常常选择数百kHz乃至1 MHz以上的频率,因为频率越高,磁性元件可以更小更轻。图2:用于开关电源应用的MOSFET对。(DC-DC控制器)显然,电源设计相当复杂,而且也没有一个简单的公式可用于MOSFET的评估。但我们不妨考虑一些关键的参数,以及这些参数为什么至关重要。传统上,许多电源设计人员都采用一个综合品质因数(栅极电荷QG 导通阻抗RDS(ON)
18、来评估MOSFET或对之进行等级划分。 栅极电荷和导通阻抗之所以重要,是因为二者都对电源的效率有直接的影响。对效率有影响的损耗主要分为两种形式-传导损耗和开关损耗。 栅极电荷是产生开关损耗的主要原因。栅极电荷单位为纳库仑(nc),是MOSFET栅极充电放电所需的能量。栅极电荷和导通阻抗RDS(ON) 在半导体设计和制造工艺中相互关联,一般来说,器件的栅极电荷值较低,其导通阻抗参数就稍高。开关电源中第二重要的MOSFET参数包括输出电容、阈值电压、栅极阻抗和雪崩能量。某些特殊的拓扑也会改变不同MOSFET参数的相关品质,例如,可以把传统的同步降压转换器与谐振转换器做比较。谐振转换器只在VDS (
19、漏源电压)或ID (漏极电流)过零时才进行MOSFET开关,从而可把开关损耗降至最低。这些技术被成为软开关或零电压开关(ZVS)或零电流开关(ZCS)技术。由于开关损耗被最小化,RDS(ON) 在这类拓扑中显得更加重要。 低输出电容(COSS)值对这两类转换器都大有好处。谐振转换器中的谐振电路主要由变压器的漏电感与COSS决定。此外,在两个MOSFET关断的死区时间内,谐振电路必须让COSS完全放电。因此,谐振拓扑很看重较低的COSS。考虑图3所示的飞兆半导体FDMS7650的COSS与VDS的关系图。图3:FDMS7650的COSS与VDS的关系图。低输出电容也有利于传统的降压转换器(有时又
20、称为硬开关转换器),不过原因不同。因为每个硬开关周期存储在输出电容中的能量会丢失,反之在谐振转换器中能量反复循环。因此,低输出电容对于同步降压调节器的低边开关尤其重要。马达控制应用的MOSFET 马达控制应用是功率MOSFET大有用武之地的另一个应用领域,这时最重要的选择基准可能又与其它大不相同。不同于现代开关电源,马达控制电路不在高频下开关。典型的半桥式控制电路采用2个MOSFET (全桥式则采用4个),但这两个MOSFET的关断时间(死区时间)相等。对于这类应用,反向恢复时间(trr) 非常重要。在控制电感式负载(比如马达绕组)时,控制电路把桥式电路中的MOSFET切换到关断状态,此时桥式
21、电路中的另一个开关经由MOSFET中的体二极管临时反向传导电流。于是,电流重新循环,继续为马达供电。当第一个MOSFET再次导通时,另一个MOSFET二极管中存储的电荷必须被移除,通过第一个MOSFET放电,而这是一种能量的损耗,故trr 越短,这种损耗越小。 所以,若设计团队需要在电源电路采用MOSFET,在评估过程开始之前,需对手中的应用进行仔细全面的考虑。应根据自己的需求而非制造商吹嘘的特定规格来对各项参数进行优先级划分。 补充:利用IC和封装设计获得最小的 RDS(ON) 规格 在MOSFET的选择过程中,评估参数的设计人员一般通过仔细分析相关规格来了解自己到底需要什么。但有时深入了解
22、IC制造商如何提供工作特性是很有必要的。以RDS(ON)为例,你也许通常期望该规格只与器件的设计及半导体制造工艺有关。但实际上,封装设计对导通阻抗RDS(ON) 的最小化有着巨大的影响。封装对RDS(ON)的作用巨大是因为该参数主要取决于传导损耗,而封装无疑可以影响传导损耗。考虑本文正文提及的飞兆半导体FDMS7650 和1m导通阻抗。该器件能获得较低RDS(ON) 值,大约一半原因可归结于封装设计。其封装采用一种坚固的铜夹技术取代常用的铝或金键合引线来连接源极和引线框架。这种方案把封装阻抗降至最小,并降低了源极电感,源极电感是开关器件产生振铃的主要原因 第三章 mosfet管的应用1,MOS
23、管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 为什么不使用耗尽型的MOS管,是因为制作工艺问题使造价偏高。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,
24、但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱
25、动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低
26、开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 4,MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。 第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VC
27、C)相同,所以这时栅极电压要比VCC大4V或10V。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。 上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量。而且电压越高,导通速度越快,导通电阻也越小。现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了。 MOS管的驱动电路及其损失,可以参考Microchip公司的AN799 Matching MOSFET Drivers to MOSFETs。 5,MOS管应用电
28、路 MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光。 现在的MOS驱动,有几个特别的需求: (1)低压应用 当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有0.7V左右的压降,导致实际最终加在gate上的电压只有4.3V。这时候,我们选用标称gate电压4.5V的MOS管就存在一定的风险。 同样的问题也发生在使用3V或者其他低压电源的场合。 (2)宽电压应用 输入电压并不是一个固定值,它会随着时间或者其他因素而变动。这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的。 为了让MOS管在高gate电压下安全
29、,很多MOS管内置了稳压管强行限制gate电压的幅值。在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗。 同时,如果简单的用电阻分压的原理降低gate电压,就会出现输入电压比较高的时候,MOS管工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗。 (3)双电压应用 在一些控制电路中,逻辑部分使用典型的5V或者3.3V数字电压,而功率部分使用12V甚至更高的电压。两个电压采用共地方式连接。 这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS管,同时高压侧的MOS管也同样会面对1和2中提到的问题。 在这三种情况下,图腾柱结构无
30、法满足输出要求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构。 于是设计了一个相对通用的电路来满足这三种需求。 电路图如下: 图1 用于NMOS的驱动电路图2 用于PMOS的驱动电路 这里只针对NMOS驱动电路做一个简单分析: Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超过Vh。 Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4不会同时导通。 R2和R3提供了PWM电压基准,通过改变这个基准,可以让电路工作在PWM信号波形比较陡直的位置。 Q3和Q4用来提供驱动电流,由于导通的时候,Q3和Q4相对Vh和GND最低都只有
31、一个Vce的压降,这个压降通常只有0.3V左右,大大低于0.7V的Vce。 R5和R6是反馈电阻,用于对gate电压进行采样,采样后的电压通过Q5对Q1和Q2的基极产生一个强烈的负反馈,从而把gate电压限制在一个有限的数值。这个数值可以通过R5和R6来调节。 最后,R1提供了对Q3和Q4的基极电流限制,R4提供了对MOS管的gate电流限制,也就是Q3和Q4的Ice的限制。必要的时候可以在R4上面并联加速电容。 这个电路提供了如下的特性: 1,用低端电压和PWM驱动高端MOS管。 2,用小幅度的PWM信号驱动高gate电压需求的MOS管。 3,gate电压的峰值限制 4,输入和输出的电流限制
32、 5,通过使用合适的电阻,可以达到很低的功耗。 6,PWM信号反相。NMOS并不需要这个特性,可以通过前置一个反相器来解决。 在设计便携式设备和无线产品时,提高产品性能、延长电池工作时间是设计人员需要面对的两个问题。DC-DC转换器具有效率高、输出电流大、静态电流小等优点,非常适用于为便携式设备供电。目前DC-DC转换器设计技术发展主要趋势有:(1)高频化技术:随着开关频率的提高,开关变换器的体积也随之减小,功率密度也得到大幅提升,动态响应得到改善。小功率DC-DC转换器的开关频率将上升到兆赫级。(2)低输出电压技术:随着半导体制造技术的不断发展,微处理器和便携式电子设备的工作电压越来越低,这就要求未来的DC-DC变换器能够提供低输出电压以适应微处理器和便携式电
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1