ImageVerifierCode 换一换
格式:DOCX , 页数:39 ,大小:369.88KB ,
资源ID:10367184      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10367184.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(空间向量与立体几何知识点.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

空间向量与立体几何知识点.docx

1、空间向量与立体几何知识点立体几何空间向量知识点总结知识网络:知识点拨:1、 空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立. 空间向量的数量积运算、 共线向量定理、共面向量定理都是平面向量在空间中的推广, 空间向量基本定理则是向量由二维到三维的推广.2、 当a、b为非零向量时.a b=0= a_b是数形结合的纽带之一,这是运用空间向 量研究线线、线面、 面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决 垂直的论证问题.斗b a bcos:a, b :3、 公式 a b是应用空间向量求空间中各种角的基础,用这个公式可以求 两异

2、面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别), 再结合平面的法向量,可以求直线与平面所成的角和二面角等.4、 直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系, 可以确定直线与直线、 直线与平面、平面与平面等的位置关系以及有关的计算问题.5、 用空间向量判断空间中的位置关系的常用方法(1) 线线平行证明两条直线平行,只需证明两条直线的方向向量是共线向量.(2) 线线垂直证明两条直线垂直,只需证明两条直线的方向向量垂直,即 a b =0= a _ b.(3) 线面平行用向量证明线面平行的方法主要有:1 证

3、明直线的方向向量与平面的法向量垂直;2 证明可在平面内找到一个向量与直线方向向量是共线向量;3 利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向 量.(4) 线面垂直用向量证明线面垂直的方法主要有:1 证明直线方向向量与平面法向量平行;2 利用线面垂直的判定定理转化为线线垂直问题.(5) 面面平行1 证明两个平面的法向量平行(即是共线向量);2 转化为线面平行、线线平行问题.(6) 面面垂直1 证明两个平面的法向量互相垂直;2 转化为线面垂直、线线垂直问题.6、运用空间向量求空间角(1) 求两异面直线所成角(H 0,-但务必注意两异面直线所成角 0的范围是 2 ,彳*c

4、os9 = cos v a, b $故实质上应有: 1 .(2) 求线面角求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量, 通过数量积求出直线与平面所成角; 另一种方法是借助平面的法向量, 先求出直线方向向量与平面法向量的夹角0 ,即可求出直线与平面所成的角 0,其关系是sin0 = | cos |.(3) 求二面角用向量法求二面角也有两种方法: 一种方法是利用平面角的定义, 在两个面内先求出与 棱垂直的两条直线对应的方向向量, 然后求出这两个方向向量的夹角, 由此可求出二面角的 大小;另一种方法是转化为求二面角的两个面的法向量的夹角, 它与二面角的大小相等或互补.7、运用空间

5、向量求空间距离空间中的各种距离一般都可以转化为求点与点、 点与线、点与面的距离.(1) 点与点的距离点与点之间的距离就是这两点间线段的长度, 因此也就是这两点对应向量的模.(2) 点与面的距离点面距离的求解步骤是:1 求出该平面的一个法向量;2 求出从该点出发的平面的任一条斜线段对应的向量;3 求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距 离.备考建议:1、 空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,应体会向量方法在研究几何图形中的作用, 进一步发展空间想像能力和几何直观能力.2、 灵活选择运用向量方法与综合方法,从

6、不同角度解决立体几何问题.3、 在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用, 它的特点是用代数方法解决立体几何问题, 无需进行繁、 难的几何作图和推理论证,起着从抽象到具体、化难为易的作用. 因此,应熟练掌握平面法向量的求法和用法.4、 加强运算能力的培养,提高运算的速度和准确性.第一讲空间向量及运算一、空间向量的有关概念1、空间向量的定义在空间中,既有大小又有方向的量叫做空间向量. 注意空间向量和数量的区别. 数量是只有大小而没有方向的量.2、空间向量的表示方法空间向量与平面向量一样, 也可以用有向线段来表示, 用有向线段的长度表

7、示向量的大i4则向量a可以记为AB,其模长为小,用有向线段的方向表示向量的方向.若向量 a对应的有向线段的起点是 A,终点是B,3、零向量长度为零的向量称为零向量,记为 0 零向量的方向不确定,是任意的由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是 “零向量”还是“非零向量”4、 单位向量模长为1的向量叫做单位向量.单位向量是一种常用的、重要的空间向量,在以后的学 习中还要经常用到.5、 相等向量I I I I4 4 4 4长度相等且方向相同的空间向量叫做相等向量.若向量 a与向量b相等,记为a=b.零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,

8、并且与有向线段的起点无关.6、 相反向量长度相等但方向相反的两个向量叫做相反向量. a的相反向量记为一a二、共面向量1、 定义平行于同一平面的向量叫做共面向量.2、 共面向量定理I I L I I若两个向量a、b不共线,则向量 P与向量a、b共面的充要条件是存在实数对 x、y,使得 p = xa yb。3、 空间平面的表达式I I T空间一点P位于平面MAB内的充要条件是存在有序实数对 x、y使MP = xMA - yMBOP =xOA - yOB zOM (其中x y )这几个式子是M,A,B,P四点共面的充要条件.三、空间向量基本定理1、 定理4 4 4 T如果三个向量a、b、c不共面,那

9、么对空间任一向量 p,存在唯一的有序实数组 x、-I 4 4 4y、乙使 p = xa +yb +zc2、 注意以下问题(1) 空间任意三个不共面的向量都可以作为空间向量的一个基底.I4(2) 由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是 0。(3) 个基底是指一个向量组,一个基向量是指基底中的某一个向量,两者是相关联 的不同概念.I I I4 4 4由空间向量的基本定理知,若三个向量 a、b、c不共面。那么所有空间向量所组成的4 4 4 4 集合就是p|p=xa yb zc,x,yz R这个集合可看做是由向量a、b、c生成的,所b A

10、4 4 4以我们把 a,b,c称为空间的一个基底。 a、b、c叫做基向量,空间任意三个不共面的向量都可构成空间的一个基底.3、 向量的坐标表示(1) 单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为 1,则这个基底叫做单位正交基厂j k、底,常用,j r表示.(2) 空间直角坐标系j k 4 -I 4在空间选定一点 o和一个单位正交基底 J,k以点o为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫坐标轴.则建立了一个空间直角坐标系O xyz,点O叫原点,向量i、j、k都叫坐标向量.(3) 空间向量的坐标给定一个空间直角坐标系和向量 a,且设i、j、k为

11、坐标向量,存在唯一有序数组(x,y, z)使a = xi y j zk,有序数组(x, y, z)叫做a在空间直角坐标系 O xyz中的坐!标,记为a= x,y,z。T T 彳 4 片 彳对坐标系中任一点 A,对应一个向量 OA,则OA=a = xi yj zk。在单位正交基底的坐标,记为A (x, y, z)四、空间向量的运算1、 空间向量的加法三角形法则(注意首尾相连)、平行四边形法则,加法的运算律:交换律 a b aI 4 4 4 * 4结合律 a b b c2、 空间向量的减法及几何作法T+彳 4 4 *几何作法:在平面内任取一点 O,作OA=a,OB=b,贝y BA = a-b,即从

12、b的终点指向a的终点的向量,这就是向量减法的几何意义.3、 空间向量的数乘运算(1)定义4 4实数与a的积是一个向量,记为 a,它的模与方向规定如下: 当,0时,a与a同向;当-0时,a与a异向;当讥=0时.a = 0注意: 关于实数与空间向量的积 人a的理解:我们可以把 a的模扩大(当扎1时),也可以缩小(扎 1时),同时,我们可以不改变向量 a的方向(当几0时),也可以改变向量a的方向(当:, 0时)。 注意实数与向量的积的特殊情况,当 =0时,a=0 ;当 -0,若a = 0时, 注意实数与向量可以求积,但是不能进行加减运算比如九+ a,丸一a无法运算。(2)实数与空间向量的积满足的运算

13、律设入、是实数,则有4 彳負.La二a.亠匚 a = a;.二a .;a b = a /-b实数与向量的积也叫数乘向量.(结合律)(第一分配律)(第二分配律)4、共线向量(1)共线向量定义若表示空间向量的有向线段所在的直线互相平行或重合,I I I I叫做平行向量。若 a与b是共线向量,则记为 a/b。则这些向量叫做共线向量,也注意:零向量和空间任一向量是共线向量.(2)共线向量定理Illi II I I4 4 4 4 4 4 4 4对空间任意两个向量 a、b ( b丰0) , a/b的充要条件是存在实数 入使a =入b(3)空间直线的向量表示式I4如果直线I是经过已知点 A且平行于已知非零向

14、量 a的直线,那么对任一点 o,点PI I I I在直线I上的充要条件是存在实数 t,满足等式OP =OA ta,其中向量a叫做直线I的方向向量.注意:l TTTTTTT TT若在1 上取豈=:则有 OP = OA+tABj OP=OA+t(OB-OA)=(1-t)OA + tOBBOA =(1-t)OA tOB2 上式可解决三点 P、A、B共线冋题的表示或判定.J OPJOA 1OB3 当 2时, 2 2 ,点P为AB的中点,这是中点公式的向量表达式.若P分AB所成比为,则5、空间直角坐标系在空间直角坐标系中, 三条坐标轴两两互相垂直, 轴的方向通常这样选择: 从z轴的正方向看,x轴正半轴沿

15、逆时针方向转 90能与y轴的正半轴重合。让右手拇指指向 x轴正方向.食指指向y轴的正方向,如果中指指向z轴的正方向,那么称这个坐标系为右手直 角坐标系。一般情况下,建立的坐标系都是右手直角坐标系.在平面上画空间直角坐标系 O xyz时,一般使/ xOy=135 , / yOz=90 。空间两点间的距离公式是平面上两点间距离公式的推广,是空间向量模长公式的推广, 如果知道儿何体上任意两点的坐标.我们就可直接套用.设 R(Xi,yi,z.),F2(X2, y2,Z2),则|pp2 = J(x2-汀+(丫2-%)2+Z -汀特别地,Pi (x,y,z)到原点的距离|OP|= . x y z6、空间向

16、量的数量积运算TT ? f f fT T T T其中:a, b 为a与b的夹角,范围是0, n ,注意数量积的性质和运算律。a b =| a | | b | cos : a, b1性质T T T T T T若a、b是非零向量,e是与b方向相同的单位向量,B是a与e的夹角,则TT TT T(1) e a = a e a | cosT T T T(2) a _ b a b =0T T TT T T(3) 若 a与 b 同向,贝y a b =|a 1 |b 1 ;若a与b反向,则aa | | b | ;2 _特别地:a a =|a| 或 |a|=ta at t aba、b的夹角,贝V cost =

17、T T(4)若 B 为 |a| |b|(5)la b |a|b|2. 运算律T T T T(i)结合律( a)b =,(ab)T T T T(2)交换律a b aT T T TT TTa (b c) = a b a c不满足消去律和结合律即:TT TT T T TTT TTTa b=b c= a=c,(a b)c不一定等于 a(b c)【典型例题】例1.已知P是平面四边形 ABCD所在平面外一点,连结 PA、PB、PC、PD,点E、F、 G、H分别为 PAB、 PBC PCD、 PDA的重心。求证:E、F、G、H四点共面。证明:分别延长PE、PF、PG、PH交对边于 M、N、Q、RT E、F、

18、G、H分别是所在三角形的重心 M、N、Q、R为所在边的中点,顺次连结 MNQR所得四边形为平行四边形,且有 2 2 2 2 tPE PM ,PF PN ,PG PQ,PH PR 3 3 3 3 MNQR为平行四边形,则2 c 2 c 2 EG =PG-PE,PQ-2PM=2MQ3 3 32 、 2 2 = (MN MR) =(PN PM) (PR PM)3 3 32 3 r 3 r 2 3 r 3 T上(3 PF_ 3 PE) 2 ( PH _ 3 PE)3 2 2 3 2 2T T=EF EH由共面向量定理得 E、F、G、H四点共面。T T T T T T例2.如图所示,在平行六面体 ABC

19、D -ABCD中,AB=a , AD = b , AA=c , P是CA的中点,M是CD的中点,N是CD的中点,点 Q是CA上的点,且 CQ: QA=4 : 1,T T T用基底 a,b , c表示以下向量:(4) AQ。T T T(1) AP ; ( 2) AM ; ( 3) AN ;解:连结AC、ADA 1 1 I I 1 iAP (AC AA) (AB AD AA) (a b c) (1) 2 2 2 1 1 1 1 AM (AC AD) (AB 2 AD AA) a b c (2) 2 2 2 2 1AN (AC AD)(3) 21 - =丄(AB AD AA) (AD AA)21(A

20、B 2AD 2AA)21 a b c24 r AQ 二 AC CQ 二 AC (AA-AC) (4) 55551 =1 4 a-b-c555点评:本例是空间向量基本定理的推论的应用此推论意在用分解定理确定点的位置, 它对于以后用向量方法解几何问题很有用, 选定空间不共面的三个向量作基向量. 并用它们表示出指定的向量,是用向量解决几何问题的一项基本功.例3.已知空间四边形 OABC中,/ AOB= / BOC= / AOC,且OA=OB=OC 。 M、N分别 是OA、BC的中点,G是MN的中点。求证: OG丄BC。证明:连结 ON,设/ AOB= / BOC= / AOC= 0TTTTTT又设

21、OA =a , OB =b , OC = c,则 | a |=| b 冃 c |o1OG (OM ON) 又 21 11 匕 OA ;(OB OC)2 2 21 (a b c)4T T TBC = c - b 1 - OG BC (a b c) (b)41(a c-a b b c_b2 c2_b c)41 (| a |2 cos 丁-| a |2 cost -1 a |2 .|a|2)=04 OG 丄 BC例 4.已知空间三点 A ( 0, 2, 3), B (- 2, 1, 6), C (1 , - 1 , 5)。T T(1) 求以AB和AC为邻边的平行四边形面积;T 厂 T T T t(2

22、) 若丨a 3,且a分别与AB、AC垂直,求向量a的坐标。解:(1)由题中条件可知AB (-2,1,3) ,AC(1,-3,)T T cos : AB,ACT TAB AC|AB|AC|-2 3 614 .14 23 sin : AB ,AC 治2.以AB、AC为邻边的平行四边形面积:3S=|AB|AC|sin :AB ,AC =14 7. 32(2) 设a( x,z)由题意得2 2 2x +y +z =3 2x y +3z =0x 3y +2z =0|x =1 |x = 1y =1 或 y _ -1解得Z i Z 一1a(1,)或 a =( 一1, 一 1,1)第二讲直线的方向向量、平面的法

23、向量及其应用一、直线的方向向量及其应用1、直线的方向向量直线的方向向量就是指和这条直线所对应向量平行 (或共线)的向量,显然一条直线的方向向量可以有无数个.2、直线方向向量的应用利用直线的方向向量,可以确定空间中的直线和平面.* _ 4(1) 若有直线I,点A是直线I上一点,向量a是I的方向向量,在直线I上取AB=a ,T T 寸则对于直线I上任意一点P, 定存在实数t,使得AP二tAB,这样,点A和向量a不仅 可以确定I的位置,还可具体表示出 I上的任意点.(2) 空间中平面a的位置可以由a上两条相交直线确定,若设这两条直线交于点 O,I I4 4它们的方向向量分别是 a和b , p为平面a

24、上任意一点,由平面向量基本定理可知,存在有序实数对(x, y),使得OP = xa yb,这样,点o与方向向量a、b不仅可以确定平面a的位置,还可以具体表示出 a上的任意点.二、平面的法向量1、 所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量.I I4 42、 在空间中,给定一个点 A和一个向量 a,那么以向量a为法向量且经过点 A的平面是唯一确定的.、直线方向向量与平面法向量在确定直线、平面位置关系中的应用T T -I H1、若两直线h、l2的方向向量分别是U1、U2,则有I/I2U * U2,|2u2、若两平面a、3的法向量分别是若直线I

25、的方向向量是U,平面的法向量是 V,则有I/ a= U丄V,I丄a= U/V四、平面法向量的求法若要求出一个平面的法向量的坐标, 一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:1、 设出平面的法向量为 n = (x, y, z).呻 o O- -4 b4n4nfl-2、 找出(求出)平面内的两个不共线的向量的坐标 & = (&4,0|)山=2,鸟(2)3、 根据法向量的定义建立关于 x, y, z的方程组4、 解方程组,取其中一个解,即得法向量 五、用向量方法证明空间中的平行关系和垂直关系(1) 用向量方法证明空间中的平行关系 空间中的平行关系主要是指:线线平行、线面平行、面面

26、平行.1、线线平行I I I I设直线11、12的方向向量分别是 a、b,则要证明 h |2,只需证明 a/b,即4 4a =kb (k R)2、线面平行- 4 4(1) 设直线I的方向向量是a,平面的法向量是n,则要证明|,只需证明an ,4 4 即 a n = 0.(2) 根据线面平行的判定定理:“如果直线(平面外)与平面内的一条直线平行,那么这条直线和这个平面平行” ,要证明一条直线和一个平面平行, 也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.(3) 根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么 这个向量与这两个不共线向量确定的平面必定平行,因此要

27、证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.3、面面平行(1) 由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平 行即可.I I I I(2) 若能求出平面a、3的法向量U、V ,则要证明a / B ,只需证明U / V(2) 用向量方法证明空间中的垂直关系空间中的垂直关系主要是指:线线垂直、线面垂直、面面垂直.2、 线面垂直I I I I(1) 设直线I的方向向量是a,平面a的法向量是u,则要证I丄a,只需证明a/ u(2) 根据线面垂直的判定定理,转化为直线与平面内的两条相交直线垂直.3、 面面垂直(1) 根据面面垂直

28、的判定定理转化为证相应的线面垂直、线线垂直.(2) 证明两个平面的法向量互相垂直.六、用向量方法求空间的角(一)两条异面直线所成的角1、 定义:设a、b是两条异面直线,过空间任一点 0作直线a/a,b/b,则a/与b/所 夹的锐角或直角叫做 a与b所成的角.0 v日兰一3、向量求法:设直线a、b的万向向量为,-r,b、a其夹角为:,则有2、 范围:两异面直线所成角 0的取值范围是 2a bCOS 日=| COS |=a t4、注意:两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但两者不 完全相等,当两方向向量的夹角是钝角时, 应取其补角作为两异面直线所成的角.(二)直线与平面所成

29、的角1、定义:直线和平面所成的角,是指直线与它在这个平面内的射影所成的角.JI 0 0 2、范围:直线和平面所成角 0的取值范围是 23、向量求法:设直线 I的方向向量为a,平面的法向量为 u,直线与平面所成的角为 0 ,(三)二面角1、二面角的取值范围:广2、二面角的向量求法(1)若AB、CD分别是二面角一:的两个面内与棱I垂直的异面直线,则二面角的大小就是向量 AB与CD的夹角(如图(a)所示).(2)设ni、n2是二面角:-1 - 的两个角a、3的法向量,贝U向量门1与n2的夹角(或 其补角)就是二面角的平面角的大小(如图( b )所示).七、用向量的方法求空间的距离cosABO =BATBO! cosABOL_i BO。如果令平面a的法向量为n ,考虑到法向量的方向,可以得到(一)点面

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1