ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:119.25KB ,
资源ID:10362545      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10362545.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(大一下学期高等数学考试题.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

大一下学期高等数学考试题.docx

1、大一下学期高等数学考试题一、单项选择题(63分)1、设直线,平面,那么与之间的夹角为( )A.0 B. C. D. 2、二元函数在点处的两个偏导数都存在是在点处可微的( )A.充分条件 B.充分必要条件C.必要条件 D.既非充分又非必要条件3、设函数,则等于( )A. B. C D. 4、二次积分交换次序后为( )A. B. C. D. 5、若幂级数在处收敛,则该级数在处( )A.绝对收敛 B.条件收敛C.发散 C.不能确定其敛散性6、设是方程的一个解,若,则在处( ) A.某邻域内单调减少 B.取极小值 C.某邻域内单调增加 D.取极大值二、 填空题(73分)1、设(4,-3,4),(2,2

2、,1),则向量在上的投影 2、设,那么 3、D为,时, 4、设是球面,则 5、函数展开为的幂级数为 6、 7、为通解的二阶线性常系数齐次微分方程为 三、计算题(47分)1、设,其中具有二阶导数,且其一阶导数不为 1,求。2、求过曲线上一点(1,2,0)的切平面方程。3、计算二重积分,其中 4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。5、求级数的和。四、综合题(10分) 曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。五、证明题 (6分)设收敛,证明级数绝对收敛。一、单项选择题(63分)1、 A 2、 C 3、 C 4、 B 5、 A 6、 D 二、

3、填空题(73分)1、2 2、 3、 4 、 5、 6、0 7、 三、计算题(59分)1、解:令则, 故2、解:令 则 所以切平面的法向量为: 切平面方程为: 3、解:4、解:令 ,则 当,即在x轴上方时,线积分与路径无关,选择由(0,1)到(2,1)则 5、解:令则 , 即 令,则有四、综合题(10分) 解:设曲线上任一点为,则过的切线方程为: 在轴上的截距为 过的法线方程为: 在轴上的截距为 依题意有 由的任意性,即,得到这是一阶齐次微分方程,变形为:.(1)令则,代入(1)得: 分离变量得: 解得: 即 为所求的曲线方程。五、证明题 (6分)证明: 即 而与都收敛,由比较法及其性质知:收敛

4、故 绝对收敛。一,单项选择题(64分)1、直线一定 ( )A.过原点且垂直于x轴 B.过原点且平行于x轴 C.不过原点,但垂直于x轴 D.不过原点,但平行于x轴 2、二元函数在点处连续 两个偏导数连续 可微 两个偏导数都存在那么下面关系正确的是( )A B. C. D. 3、设,则等于( )A.0 B. C. D. 4、设,改变其积分次序,则I( )A. B. C. D. 5、若与都收敛,则( )A.条件收敛 B.绝对收敛C.发散 C.不能确定其敛散性6、二元函数的极大值点为( ) A.(1,0) B.(1,2) C.(-3,0) D.(-3,2)二、 填空题(84分)1、过点(1,3,2)且

5、与直线垂直的平面方程为2、设,则 3、设D:,则 4、设为球面,则 5、幂级数的和函数为 6、以为通解的二阶线性常系数齐次微分方程为 7、若收敛,则 8、平面上的曲线绕轴旋转所得到的旋转面的方程为 三、计算题(47分)1、设可微,由确定,求及。2、计算二重积分,其中。3、求幂级数的收敛半径与收敛域。4、求曲线积分,其中是由 所围成区域边界取顺时针方向。四、综合题(10分) 曲线上点的横坐标的平方是过点的切线与轴交点的纵坐标,求此曲线方程。五、证明题 (6分)设正项级数收敛,证明级数也收敛。一、单项选择题(64分)1、 A 2、 A 3、 C 4、 B 5、 B 6、 D 二、 填空题(84分)1、 2、 3、 4 4、 5、 6、 7、1 8、 三、计算题(47分)1、解:令 2、解: =3、解:令对于, 当时发散 当时,也发散所以在时收敛,在该区间以外发散,即解得 故所求幂级数的收敛半径为2,收敛域为(0,4)4、解:令,则,由格林公式得到 4四、综合题(10分) 解: 过的切线方程为: 令X0,得 依题意有:即.(1)对应的齐次方程解为 令所求解为 将代入(1)得:故(1)的解为: 五、证明题 (6分)证明:由于收敛,所以也收敛,而 由比较法及收敛的性质得: 收敛。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1