ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:18.46KB ,
资源ID:10197986      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10197986.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(常微分方程学习心得体会.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

常微分方程学习心得体会.docx

1、常微分方程学习心得体会常微分方程,学习心得体会篇一:常微分学习心得 常微分学习心得 时光飞逝,常微分的学习也进入了尾声,通过这一学期以来对常微分的学习,我对常微分有了更深的了解,同时,也发现了一些以前没有发现的不足的地方。 从学习常微分开始,我就觉得常微分比以前学习的科目要难,而且常微分也与我们以前学习的数学分析和高等代数有着很大的联系,如果连这两门科目都没有学好,那么常微分就基本不会做,在我看来,熟练掌握常微分方程的一些基本解法是学习常微分方程的主要任务,老师在上课时主要是讲想法,锻炼同学们的思维能力的这种教学方法很独特,但是,我们大多数的同学,特别是基础没打好的同学学习起来会有点吃力,接受

2、起来也会有一点难度。因此希望老师在讲解的时候能够具体一点,这样大家学起来会轻松一点。同时,学习是我们自己的事情,常微分的学习让我更加深刻的了解到这一点,我任务常微分只在课堂上学习是不够的,只在课堂上学习的话,过不了多长时间就会忘记,这说明我们对知识的理解并不透彻,掌握的也并不牢固,因此,我们需要在课后进行巩固和提高。 以上就是我在这个学期学习常微分的心得和体会。我相信,通过对常微分的学习,我以后能够做得更好。 篇二:常微分学习心得 常微分学习心得 常微分方程是研究自然现象,物理工程和工程技术的强有力工具,熟练掌握常微分方程的一些基本解法是学习常微分方程的主要任务,凡包含自变量,未知函数和未知函

3、数的导数的方程叫做微分方程。满足微分方程的函数叫做微分方程的解,含有独立的任意常数的解称为微分方程的通解。确定通解中任意常数后所得的解称为该方程的特解。 dyyydx=x +tanx ydy解:令=x,及dx =x+代入,则原方程变为 tanx+=+tan,即 =x dx将上式变量分离即有cotd=x , 两边积分得sin=x+c这里c为任意常数 整理后得:sin=e ,令e =c得到sin=c x 此外,方程还有解tan=0,sin=0. 如果在sin=c x中允许c=0,则sin=0也就包括在sin=c x tan中,这就是方程 =的通解为sin=c x代回原方程得通解x ysinx =c

4、 x。 一阶微分方程的初等解法中把微分方程的求解问题化为了积分问题,这类初等解法是,与我们生活中的实际问题密切相关的值得我c c 们好好探讨。 在高阶微分方程中我们学习的线性微分方程,作为研究线性微分方程的基础,它在物理力学和工程技术, 自然科学中时存在广泛运用的,对于一般的线性微分方程,我们又学习了常系数线性微分 变量的方程,其中涉及到复值与复值函数问题,相对来说是比较复杂难懂的。 至于后面的非线性微分方程,其中包含的稳定性,定性基本理论和分支,混沌问题及哈密顿方程,非线性方程绝大部分的不可解不可积现象导致了我们只能通过从方程的结构来判断其解的性态问题,在这一章节中,出现的许多概念和方法是我

5、们从未涉及的,章节与章节中环环相扣,步步深入,由简单到复杂,其难易程度可见一斑。 由此,常微分方程整体就是由求通解引出以后的知识点,以求解为基础不断拓展,我们所要学习的就是基础题解技巧,培养自己机制与灵活性,多反面思考问题的能力,敏锐的判断力也是不可缺少的。、 篇三:常微分方程课程总结 常微分方程课程总结 理学院 组长:杨文蛟组员:倪宝珠 数学091班 : XX1XX129) (XX1XX123)王向魁 (XX1XX126) 杨历 (XX1XX128) 党浩 (XX1XX117) XX/6/5 (学号 常微分方程课程总结 第一章 绪论 微分方程的基本概念 (1)常微分方程偏微分方程 微分方程:

6、凡含有未知函数的导数或微分的方程叫微分方程。 常微分方程:未知函数为一元函数的微分方程。 dydxdydx ?axy,a为常数 ?px ? y?Q ?x? 偏微分方程:未知函数为多元函数,从而出现偏导数的微分方程。 2?u?x?2?u?y?u?y?f ?x,y? 2?u?x?4 (2)线性与非线性 一般n阶线性微分方程具有形式:(等式左面全是一次有理整式) y (n) ?a1(x)y (n?1) ?an?1(x)y?an(x)y?f(x). (3)解和隐式解 微分方程的解:代入微分方程能使方程成为恒等式的函数. 隐式解:(x,y)=0 (4)通解和特解 通解:微分方程的解中含有任意常数,且任意

7、常数的个数与微分方程的阶数同.) 特解: 确定了通解中任意常数以后的解. 初始条件:用来确定任意常数的条件. 初值问题: 求微分方程满足初始条件的解的问题. (5)积分曲线:微分方程任一特解的图形都是一条曲线,称为微分方程的积曲线。 第二章 一阶微分方程的初等解法 变量分离方程与变量变换 、变量分离方程 dydx ?f(x)?(y) ? dy ?(y) ? ? f(x)dx?c 、可化为变量分离方程的类型 1.形如 dydx ?g( yx ),称为齐次微分方程,令u yx ,即yux,于是 dydx x dudx u,代入原方程,变形为x dudx ug(u),整理得 dydx dudx g(

8、u)?u x 2.形如? a1x?b1x?c1a2x?b2x?c2 的方程也可经变量变换化为变量分离方程 (1) a1a2a1a2a1a2 ? b1b2b1b2b1b2 ? c1c2 ?k(常数),方程化为 dydx k,有通解y?kx?c (2)?k? c1c2 情形,令ua1x?b2y,这时有 dudx a2?b2 dydx a2?b2 ku?c1u?c2 是分离变量方程 (3)? 情形,若c1、c2不全为零,方程右端分子、分母都是x、y的一次多项式,因此a1x?b1x?c10, a2x?b2y?c20,交点(?,?),令Xx?,Yy?,化为a1X?b1Y?0, a2X?b2Y?0。则原方

9、程变形 为 dYdX ? a1X?b1Ya2X?b2Y g( YX ) 线性微分方程与常数变易法 (1)一阶线性微分方程 dydx ?P(x)y?Q(x),其中P(x),Q(x)在区间上是x的连续函数。若Q(x)0,则变为 dydx ?P(x)y, 称为一阶齐次线性微分方程,若Q(x)?0,则称为一阶非齐次线性微分方程。 (2) dydx ?P(x)y是变量分离方程,解为y?ce? P(x)dx P(x)dx (c是任意常数)。 (3)常数变异法,令y?c(x)e? ,微分之,得到 dydx ? P(x)dxdc(x)?P(x)dx e?c(x)P(x)e?代入原方程得到新方程,解得dx c(

10、x)? ?P(x)dx?Q(x)edx?c ? P(x)dx?P(x)dx ?得到通解y?e?Q(x)edx?c ? (4)伯努利微分方程 dydx dzdx ?P(x)y?Q(x)y ?n n 令z?y 1?n ,从而?(?n)y dzdx dydx ,均代入原方程得到 ?(1?n)P(x)z?(1?n)Q(x),这是线性微分方程。 恰当微分方程与积分因子 恰当微分方程 (1)简单二元函数的全微分: ydx?xdy?d(xy) ydx?xdy y 2 ?d( xy ) yx ?ydx?xdy x 2 ?d() yx ?ydx?xdy xy ?d(ln) ydx?xdyx?y 2 2 ?d(l

11、narctan xy ) ydx?xdyx?y 2 2 ? 12 d(ln x?yx?y ) 积分因子 ?M?y ?N?N?x ?(x),积分因子?e? ?(x)dx 。 一阶隐式微分方程与参数表示 (1)形如y?f(x, dydx dydx ), dydx 引入参数?p,原方程变为y?f(x,p),两边对x求导,并以?p代入,得到p? ?y?x ? ?fdy?pdx ,这是关于x,p 的一阶微分方程 (2)形如x?f(y, dydx dydx ), 引入参数?p,原方程变为x?f(x,p),两边对y求导,并以 dxdy ? 1p 代入,得到 1p ? ?f?y ? ?fdp?pdy ,这是关

12、于y,p 的一阶微分方程,设求得通解为?(y,p,c)?0,则方程通解为?(3)形如F(x,y?)0 x?y?3xy?0 解:令y?p?tx,则由方程得 9(1?2t)t(1?t) 3 33 2 3 3 x?f(y,p) ?(y,p,c)?0 x? 32 3t1?t 3 ,从而p? 3t 23 1?t ,于是dy? 9(1?2t)t(1?t) 3 3 32 形如F(y,y?)dt,积分之,得到(4) y? ? dt? 31?4t 3 2(1?t) ?c 0 第三章 一阶微分方程解的存在定理 解的存在性唯一性定理和逐步逼近法 1存在性与唯一性定理: (1)显式一阶微分方程 dydx ?f(x,y

13、) () 这里f(x,y)是在矩形域:R:|x?x0|?a,|y?y0|?b() 上连续。 定理1:如果函数f(x,y)满足以下条件:1)在R上连续:2)在R上关于变量y满足李普希兹(Lipschitz)条件,即存在常数L?0,使对于R上任何一对点(x,y1),(x,y2)均有不等式f(x,y1)?f(x,y2)?Ly1?y2成立,则方程()存在唯一的解y?(x),在区间|x?x0|?h上连续,而且满足初始条件 ?(x0)?y0 () 其中h?min(a, bM ),M?maxf(x,y),L称为Lipschitz常数. x,y?R 思路: 1) 求解初值问题()的解等价于积分方程y?y0?的

14、连续解。 2) 构造近似解函数列?n(x) 任取一个连续函数?0(x),使得|?0(x)?y0|?b,替代上述积分方程右端的 y,得到 ? xx0 f(x,y)dx ?1(x)?y0? ? xx0 f(x,?0(x)dx 如果?1(x)?0(x),那么?0(x)是积分方程的解,否则,又用?1(x)替代积分方程右端的y,得到 ?2(x)?y0? ? xx0 f(x,?1(x)dx 如果?2(x)?1(x),那么?1(x)是积分方程的解,否则,继续进行,得到?n(x)?y0?于是得到函数序列?n(x). 3) 函数序列?n(x)在区间x0?h,x0?h上一致收敛于?(x),即 lim?n(x)?(x) n? ? xx0 f(x,?n?1(x)dx () 存在,对()取极限,得到 lim?n(x)?y0?lim n? n?xx0 ? xx0 f(x,?n?1(x)dx =y0? ? f(x,?(x)dx 即?(x)?y0? ? xx0 f(x,?(x)dx. 4) ?(x)是积分方程y?y0? ? xx0 f(x,y)dx在x0?h,x0?h(转 载 于: 小 龙文 档 网:常微分方程,学习心得体会)上的连续解.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1