ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:306.36KB ,
资源ID:10171541      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10171541.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(试验22三维数据的绘图.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

试验22三维数据的绘图.docx

1、试验22三维数据的绘图实验2.2 三维数据的绘图实验目的学会MATLAB软件中三维图形(二元函数)、曲面图形、等高线图的绘图方法。三维图形包括空间曲面、空间曲线、等高线图等图形。函数z=f(x,y)的图像一般是一张空间曲面.一般说来,参数方程组的图像是空间一条曲线。如果二元函数z=f(x,y)在平面数集D上有定义,空间曲线称为函数z=f(x,y)的等高线。 实验内容1空间曲线的作图绘制空间曲线命令:plot3(x,y,z,S)x,y,z是n维向量,分别表示曲线上点集的横坐标、纵坐标、与竖坐标;S是可选的字符串,用来指定颜色、标记符号和/或线形。【例题2.5】画出参数曲线的图形。题目分析:由于参

2、数方程表示的是空间曲线,所以可用plot3命令画出图形,根据plot3命令格式要求,先产生参数t向量,再生成向量X、Y、Z。解:用plot3作图命令,程序为:t=0:pi/50:10*pi;plot3(sin(t),cos(t),t)title( 螺旋线 ),xlabel( sint(t) ),ylabel( cos(t) ),zlabel( t );text(0,0,0, 原点 ) %在坐标原点(0,0,0)处注解grid on运行结果如图2.5所示。图2.5说明:(1)从例中可明显看出,二维图形的所有基本特性在三维中仍都存在,如坐标网格、标题等。(2)plot3(X,Y1,S1, X,Y2

3、,S2, ,X,Yn,Sn)命令可将多条曲线画在一起。【例题2.6】 设曲面,画出与平面相交的多条曲线。题目分析:显然平面与x轴的交点坐标构成向量x= (-1.5, -1.0 , -0.5, 0, 0.5, 1.0, 1.5),由命令meshgrid的用法可知,可以用该命令生成二元函数z = f(x,y)中x-y平面上的矩形定义域中数据点矩阵X和Y。解:选用plot3作图命令,程序为:clear x=-1.5:0.5:1.5;y=-2:0.5:2;X,Y=meshgrid(x,y); %生成数据点矩阵X和YZ=X.2+Y.2; plot3(X,Y,Z)title( 截痕线 ),xlabel(

4、x ),ylabel( y ),zlabel( z )grid on运行结果如图2.6所示。图2.6说明:从图形容易看出这些曲线是抛物线。2空间曲面的作图(1)绘制空间曲面命令:surf(x,y,z) x,y,z是n维向量,分别表示曲线上点集的横坐标、纵坐标与竖坐标。(2)绘制空间网格曲面命令:mesh(x,y,z) x,y,z是n维向量,分别表示曲线上点集的横坐标、纵坐标、与竖坐标。注意:空间曲面绘图时,首先要利用meshgrid命令在xoy面生成网格线,才可以绘图。【例题2.7】 绘出旋转抛物面的图形。解法1:选用surf作图命令,程序为:x=-2:0.05:2;y=-2:0.05:2;X

5、,Y=meshgrid(x,y); %生成数据点矩阵X和YZ=X.2+Y.2;surf(X,Y,Z)grid onshading flat %将当前的图形变平滑运行结果如图2.7所示。图2.7解法2:选用mesh作图命令,程序为:x=-2:0.1:2;y=-2:0.1:2;X,Y=meshgrid(x,y); Z=X.2+Y.2;mesh(X,Y,Z)运行结果如图2.8所示。图2.8说明:(1)由于作图范围是平面上的矩形区域,因此画出的图形位于长方体区域内。(2)程序中对函数图形的属性作了一些处理,比如使当前的图形变平滑等。利用在xy平面的矩形网格点上的z轴坐标值,MATLAB定义了一个网格曲

6、面。MATLAB通过将邻接的点用直线连接起来形成网状曲面,其结果好象在数据点有结点的鱼网。 3、曲面的等高线图等高线命令:contour(z)把矩阵z中的值作为一个二元函数的值,等高曲线是一个平面的曲线,平面的高度v是Matlab自动取的;C,h=contour(x,y,z,n)(x,y)是平面z=0上点的坐标矩阵,z为相应点的高度值矩阵,有n条等高线。【例题2.8】在范围内,绘出曲面的等高线。题目分析:由题目的要求,选用contour作图命令。解:程序为:x=-2:0.2:2; y=-2:0.2:3;X,Y=meshgrid(x,y); Z=X.*exp(-X.2-Y.2);C,h=cont

7、our(X,Y,Z); clabel(C,h); %给等值线图标上高度值(见图2.9)colormap cool; %图形窗口的色图figure(2); %新建图形窗口(2),以显示下面的所作图形。subplot(2,1,1);mesh(X,Y,Z); % 画出立体网状图subplot(2,1,2);surf(X,Y,Z); % 画出立体曲面图shading flat运行结果如图2.9、2.10所示。图2.9图2.10说明:函数clabel给等值线图标上高度值。不过这样做时,函数clabel需要函数contou等值线矩阵的输出。在三维作图常用到命令:meshgrid生成二元函数z = f(x,

8、y)中x-y平面上的矩形定义域中数据点矩阵X和Y,或者是三元函数u = f (x,y,z)中立方体定义域中的数据点矩阵X,Y和Z。X,Y = meshgrid(x,y) 输入向量x为x-y平面上矩形定义域的矩形分割线在x轴的值,向量y为x-y平面上矩形定义域的矩形分割线在y轴的值。输出向量X为x-y平面上矩形定义域的矩形分割点的横坐标值矩阵,输出向量Y为x-y平面上矩形定义域的矩形分割点的纵坐标值矩阵。 X,Y,Z = meshgrid(x,y,z)输入向量x为立方体定义域的立方体分割平面在x轴上的值,输入向量y为立方体定义域的立方体分割平面在y轴上的值,输入向量z为立方体定义域的立方体分割平

9、面在z轴上的值。输出向量X为立方体定义域中分割点的x轴坐标值,Y为立方体定义域中分割点的y轴坐标值,Z为立方体定义域中分割点的z轴坐标值。4、建模问题的作图【例题2.9】 (1994年全国大学生数学建模竞赛A题)要在一山区修建公路,首先测得一些地点的高程,数据见表2.2(平面区域0x5600,0y4800;表中数据为坐标点的高程,单位:米;y轴正向为北)。表2.2480013501370139014001410960940880800690570430290210150440013701390141014301440114011101050950820690540380300210400013

10、801410143014501470132012801200108094078062046037035036001420143014501480150015501510143013001200980850750550500320014301450146015001550160015501600160016001550150015001550150028008950119013701500120011001550160015501380107090010501150120024009101090127015001200110013501450120011501010880100010501100

11、200088010601230139015001500140090011001060950870900930950160083098011801320145014201400130070090085084038078075012007408801080113012501280123010409005007007807506505508006507608809701020105010208308007003005005504803504005106207308008508708507807206505002003003503200370470550600670690670620580450400

12、300100150250y/x0400800120016002000240028003200360040004400480052005600试利用表中的数据,绘制这一山区的地貌网格图、平滑地貌图、等高线图。题目分析:山区地貌可视为为空间曲面,根据表中的测量数据,可建立空间直角坐标系,坐标系的原点位于xy面的起始测量位置。利用meshgrid命令建立起x-y平面上的矩形定义域(x,y)|0x5600,0y4800中数据点矩阵X和Y,若将表中高程数据按原来的行列顺序作为地貌的纵坐标,此时给出Y轴的坐标的顺序是4800,4400,4000,0。又由于测量的数据间隔较大,直接作出较平滑的地貌图是不精确

13、的,若假设地貌的变化是连续的,则可用插值的方法画出较平滑的地貌图。解:程序为:x=0:400:5600; %给出X轴的坐标y=4800:-400:0; %给出Y轴的坐标X,Y=meshgrid(x,y); Z=1350 1370 1390 1400 1410 960 940 880 800 690 570 430 290 210 50;1370 1390 1410 1430 1440 1140 1110 1050 950 820 690 540 380 300 210;1380 1410 1430 1450 1470 1320 1280 1200 1080 940 780 620 460 37

14、0 350;1420 1430 1450 1480 1500 1550 1510 1430 1300 1200 980 850 750 550 500;1430 1450 1460 1500 1550 1600 1550 1600 1600 1600 1550 1500 1500 1550 1500;950 1190 1370 1500 1200 1100 1550 1600 1550 1380 1070 900 1050 1150 1200;910 1090 1270 1500 1200 1100 1350 1450 1200 1150 1010 880 1000 1050 1100;880

15、 1060 1230 1390 1500 1500 1400 900 1100 1060 950 870 900 930 950;830 980 1180 1320 1450 1420 1400 1300 700 900 850 840 380 780 750;740 880 1080 1130 1250 1280 1230 1040 900 500 700 780 750 650 550;650 760 880 970 1020 1050 1020 830 800 700 300 500 550 480 350;510 620 730 800 850 870 850 780 720 650

16、500 200 300 350 320;370 470 550 600 670 690 670 620 580 450 400 300 100 150 250; %给出(x,y)点的高程surf(X,Y,Z); %网格阴影图 见图2.11figure(2); %新开一窗口contour(X,Y,Z,20); %画平面等高线见图2.12figure(3); %再新开一窗口contour3(X,Y,Z,20); %画三维等高线见图2.13xi=linspace(0,5600,50);yi=linspace(0,4800,50); % 给出新的插值坐标XI,YI=meshgrid(xi,yi);ZI

17、=interp2(X,Y,Z,XI,YI,*cubic); %对数据(xi, yi,zi)使用样条在网格 X,Y 上插值.surf(XI,YI,ZI); %用网格画出插值的结果见图2.14shading interp %采用插补明暗处理见图2.15图2.11图2.12图2.13图2.14图2.15说明:(1)图形显示在y=3200米处有一东西走向的山峰;从坐标(2400,2400)到(4800,0)有一西北东南走向的山谷;在(2000,4800)附近有一山口峰。(2)在MATLAB中,除命令interp2(X,Y,Z,XI,YI,*cubic) 对数据(X,Y,Z)使用样条在网格 XI,YI 上插值外,函数griddata也用来产生经插值后的均匀间隔数据以作图,其格式为ZI=griddata(X,Y,Z,XI,YI),功能是三个原始矩阵X,Y,Z和需要插值的方格矩阵XI,YI,创建一个新的因变量矩阵ZI。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1