1、数学与建筑的关系 数学与建筑的关系几千年来,数学一直是用于设计和建造的一个很珍贵的工具。它一直是建筑设计思想的一种来源,也是建筑师用来得以排除建筑上的试错技术的手段。数学与建筑,就象混凝土搅拌后砂石与水泥相互粘合那样,有着一种无形的十分密切的情结。在这里,数学这一根底学科,作为人类认识自然、理解自然、掌握自然,以及征服自然的钥匙和工具,也早已渗透到建筑学科的所有领域。数学为建筑效劳,建筑也离不开数学。下面从以下几个方面阐述一下数学与建筑之间的关系。第一方面,什么是数学?谈起数学,很自然会联想到小学里学过的算术,初中时学的代数、平面几何以及中专阶段讲到的三角、立体几何、平面解析几何和一元微积分学
2、等等。这些数学内容由浅入深,由少到多,由简单到复杂,五花八门,琳琅满目。然而,把这些内容仔细分析一下,数学分为初等数学与高等数学两大局部。初等数学中主要包含两局部:几何学与代数学。几何学是研究空间形式的学科,而代数学那么是研究数量关系的学科。初等数学根本上是常量的数学。 高等数学含有非常丰富的内容,以大学本科所学为限,它主要包含: 解析几何:用代数方法研究几何,其中平面解析几何局部内容已放到中学。线性代数:研究如何解线性方法组及有关的问题。高等代数:研究方程式的求根问题。 微积分:研究变速运动及曲边形的求积问题。作为微积分的延伸,物理类各系还要讲授常微分方程与偏微分方程。 概率论与数理统计:研
3、究随机现象,依据数据进行推理。所有这些学科构成高等数学的根底局部,在此根底上建立了高等数学的宏伟大厦。对于我们建筑来说,建筑与数学的那份交情,老早就是根深蒂固的。但是,假设要与上面列举的新兴边缘学科比拟,那么到目前为止还是缺乏以自成体系的。对于我们工科学校来说,最重要的是应该去了解并掌握与专业教学有关的数学内容,使之作为一门重要的工具课,能学以致用,学以够用,更好地为专业效劳。总之,数学是什么?说得具体一些,数学是以数和形的性质、变化、变换和它们的关系作为研究对象,探索它们的有关规律,给出对象性质的系统分析和描述,并在此根底上分实际,培训得具体解法的科学。如果换一个角度,数学也可看成是对客物质
4、世界的数量关系和空间形式的一种抽象。第二个方面,什么是建筑?“建筑指建筑物和构筑物的通称。建筑物,这是为了满足社会需要,利用所掌握的物质技术手段,在科学规律和美学法那么支配下,通过对空间的限定组织而创造的人为的社会生活环境。构筑物,是指人们不直接在内进行生产和生活的建筑。如烟囱、水塔、堤坝等。建筑从形态学来说,构成建筑形式的根本要素为:点、线、面、体。点是所有形式之中的原生要素,从点开始,其它要素都是点派生出来的。例如,一个点展开变成一条线,一条线展开变成一个面,一个面展开变成一个体。建筑的所有形态,都是依据点、线、面、体四个根本要素构成的,表达的就是一个“形字。建筑从工程学说,侧重的是工程计
5、算,这是建筑构成的根底,也是建筑构成的手段。例如,把点变成线,把线变成面,把面变成体的量度,是建筑构成的重要特征。这在建筑工程中,是计算的根本内容。这里,除建筑构成已表现出来的长度、面积、体积等特征外,“量度还反映了重量、角度、强度等“量和其它特征。这些归纳起来,便是“数。总之,建筑中的“数与“形,是对客观物质世界的数量关系和空间形式的一种表现,是人类为了适应环境的一种创造。第三个方面,数学与建筑有什么联系?如前所叙,同样是“数与“形,一种对其抽象,一种对其表现。一种是其抽象,一种对其表现。表现依据了抽象,抽象来自表现。在建筑工程的实践中,我们会遇到各种各样“数与“形的问题。例如,在房屋设计中
6、,既要进行各种技术经济指标以及荷载、内力、构件截面等数量的分析与计算,又要进行建筑、结构、水暖电工等图形的分析与绘制;在组织施工中,既要进行建筑资源如材料量、劳动力等数量的分析与计算,又要进行建筑资源使用的时间安排和空间布置等的分析与绘制。在实现建筑工业现代化的过程中,我们将会遇到更多的“数与“形的问题。这里,对于我们建筑类中专学校来说,在各类专业课程的讲授与学习当中,数学知识的应用说是比比皆是的。例如,劳动力的安排、施工进度、配料、支座反力,需要一次代数方程的计算;生产增长率,简支梁受压区高度,需要二次代数方程的计算;劳动生产率、钢筋锚固锚长度、配料允许范围的计算,建筑材料的代换,需要代数不
7、等式的应用;土方施工中“零点位置确实定,变截面梁钢箍高度的计算,建筑构件形体及自重的计算,需要大量的几何及三角计算;均匀荷载作用位置的函数及幂函数的应用。下面,我们再来讨论一下建筑与高等数学的联系。从中专数学第三册第十四章“极限与连续开始,数学内容便进入到高等数学范畴。这里,通过导数的学习,为建筑力学中梁的弯矩及挠度计算提供了各种各样的便利;对于导数的应用及最大值、最小值的讨论,又为建筑施工中人力、物力、财力的合理使用找到了较佳方法;对于弧长微分与曲率的计算,可得到荷载作用下梁的弯曲程度的精解;对于积分运算、概率与统计、行列式、矩阵与线性方程、微分方程等内容,在建筑力学和建筑结构计算中,建设方
8、案或生产方案的决策中,施工网络及建筑产品或用品的概率分析中,都有着大量的广泛的应用。这里,还需说明的是,在建筑美学中,有一个重要的奇特的常数叫0.618,这个数字又称把一条线段分割为两局部,使其中一局部与全长之比等于另一局部与这局部之比。其比值是,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以来近似,a:b=(a+b):a 通常用希腊字母的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最正确。 特别偏爱,无论是古埃及的金字塔,还是巴黎处,能使琴声更加柔和甜美。 古希腊帕提侬神庙是举世闻名的完美建筑,它
9、的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮连一扇门窗假设设计为黄金矩形都会显得更加协调和令人赏心悦目 事实上,在一个黄金矩形中,以一个顶点为圆心,矩形的较短边为半径作一个四分之一圆,交较长边与一点,过这个点,作一条直线垂直于较长边,这时,生成的新矩形不是那个正方形仍然是一个黄金矩形,这个操作可以无限重复,产生无数个黄金矩形。令人惊讶的是,人体自身也和0.618密切相关,对人体解剖很有研究的意大利画家达芬奇发现,人的肚脐位于身长的0.618处;咽喉位于肚脐与头顶长度的0.618处;肘关节位于肩关节与指头长度的0.618处,
10、人体存在着肚脐、咽喉、膝盖、肘关节四个黄金分割点,它们也是人赖以生存的四处要害。 在我国,0.618这个常数在优选法里也有其重要的作用,是最常用的一种方法。例如某建筑材料实验室为了选择建筑材料的最优配方,采用了0.618法,只需做很少几次试验就确定出最优方案,从而大大节省了人力物力财力。第四个个方面,一部建筑史,无处不折射出数学的辉煌。有人说:建筑是一部石头史书,几千年人类文明的痕迹,无不铭刻在这石头的史书上。我们说:在这部石头的史书上,在这些先民的遗迹上,也无处不折射出数学的辉煌。一些历史上的例子是为建造埃及、墨西哥和尤卡坦的金字塔而计算石块的大小、形状、数量和排列的工作,依靠的是有关直角三
11、角形、正方形、毕达哥拉斯定理、体积和估计的知识。秘鲁古迹马丘比丘的设计的规那么性,没有几何方案是不可能的。希腊雅典的巴台农神庙的构造依靠的是利用黄金矩形、视错觉、精密测量和将标准尺寸的柱子切割成呈精确规格永远使直径成为高度的 13的比例知识。埃皮扎夫罗斯古剧场的布局和位置的几何精确性经过专门计算。以提高音响效果,并使观众的视域到达最大。圆、半圆、半球和拱顶的创新用法成了罗马建筑师引进并加以完善的主要数学思想。拜占庭时期的建筑师将正方形、圆、立方体和半球的概念与拱顶漂亮地结合在一起,就像君士坦丁堡的圣索菲亚教堂中所用的那样。古代的埃及法老王动用庞大的人力物力,为自己建立金字塔陵墓,原因为何?除了
12、夸耀自己的丰功伟绩外,当中有没有超自然的理由呢?引用科学家的研究,揭示金字塔神秘的一面。 科学家证实,金字塔的形状有一股奇异的力量,能使尸体迅速脱水,加速木乃伊化,古代法老相信这会加速他们的复活。有研究亦发现,假设把一枚锈斑斑的金币放进金字塔里,不久就会变得金光闪烁;假设把一杯鲜奶放进金字塔内,二十四小时后取出,鲜奶仍然新鲜;假设有人牙痛或头痛,到金字塔呆一小时后,就会消肿解痛。 人类对于金字塔神秘力量的研究,从未间断。不少科学实验证明,把肉食、蔬菜、水果、牛奶等放在金字塔模型,可以保持长期新鲜不腐。现在法国、意大利等国家一些乳制食品公司,也把这项实验成果运用于生产线内,采用金字塔形的袋盛载鲜
13、奶,保鲜时间可以很久。不止如此,把种子放在金字塔模型内,可以加快发芽;断根的农作物栽在金字塔内,可继续生长。所以有人考虑把葡萄棚设计成金字塔状,以提高葡萄产量,增加含糖量。金字塔能拥有这种力量,有科学家解释是和金字塔的形状与其空间内所进行的自然、化学、生物的进程有关。不同种类的几何图形外状,会加速或减慢空间内的自然进程,只是金字塔形有较强的影响力。想知道更多对金字塔神秘力量的剖析。一谜未解,一谜又起。说法越来越多,也愈来愈离奇,被它吸引的人也日益增加。几年前,法国工程师杜拜尔在其?形状波?一书中强调指出,各种形状,如圆锥形、球形、正方形、金字塔形,都能通过宇宙射线或阳光改变其内部的宇宙波。 金
14、字塔形并不是会在其内部空间产生特殊能场的唯一形状。杜拜尔还说,人的一生都是在各种形状的建筑物中度过的,从一种形状到另一种形状,譬如汽车、影剧院、住房等。他主张应研究建筑物形状对人体的影响,在设计建造房屋时选择对人们健康最有益的几何图形。杜拜尔认为球形和金字塔形的建筑物最有益于身心健康,这两种形状的病房能加速病情的好转。也有人认为圆柱状结构好处多。一些研究者认为,目前人类一生中大局部的时间是在正方形和长方形的建筑物中度过的,而这两种形状不能产生积极和特殊的能源,相反,它们可能产生某种消极的力场,阻隔和破坏周围有利于人类的自然力场。他们呼吁建筑师们认真考虑,在设计住房、办公室、病房等建筑时,改变因
15、循守旧的传统的正方形和长方形形式,使人类得以在更符合身体健康、令人充满活力的建筑形状中工作和生活。文艺复兴时期的石建筑物,显示了一种在明暗和虚实等方面都堪称精美和文雅的对称。随着新建筑材料的发现,适应于这些材料最大潜力发挥的新的数学思想也应运而生。用各种各样可以得到的建筑材料,诸如石头、木材、砖块、混凝土、铁、钢、玻璃、合成材料(如塑胶、强力水泥、速凝水泥)等等,建筑师们能够设计出实质为任何形状的建筑物在近代,我们能亲眼见到双曲抛物体形式的建筑物(旧金山圣玛丽大教堂)、B富勒的短程式构造、P索罗里的易于别离和结合的设计、抛物线型的机棚、模仿游牧部落帐篷的立体组合结构、支撑东京奥林匹克运动大厅的
16、悬链线缆,以及带有椭圆顶天花板的八角形房屋等等建筑是一门正在开展中的科学建筑师们研究、提炼、提高,并对过去和新产生的一些想法重新加以筛理,终于使自己能够自由地想象任何的设计,只要数学和材料能够支持这样的构造。中国是世界四大文明古国,中国有着悠久的历史,中国的劳动人民用自己的血汗和智慧创造了辉煌的中国建筑文明。中国的古建筑是世界上历史最悠久,体系最完整的建筑体系。从单体建筑到院落组合,城市规划,园林布置等在世界建筑史中都处于领先地位;中国建筑独一无二地表达了的天人合一的建筑思想。古代世界的建筑因着文化背景的不同,曾经有过大约七个独立体系,其中有的或早已中断,或流传不广,成就和影响也就相对有限,如
17、古埃及、古代西亚、古代印度和古代美洲建筑等,只有中国建筑、欧洲建筑、伊斯兰建筑被认为是世界三大建筑体系,又以中国建筑和欧洲建筑延续时代最长,流域最广,成就也就更为辉煌。中国建筑以中国为中心,以汉族为主体,在漫长的开展过程中,始终完整保持了体系的根本性格。原始社会至汉代是中国古建筑体系的形成时期。在原始社会早期,原始人群曾利用天然崖洞作为居住处所,或构木为巢。到了原始社会晚期,在北方,我们的祖先在利用黄土层为壁体的土穴上,用木架和草泥建造简单的穴居或浅穴居,以后逐步开展到地面上。南方出现了干栏式木构建筑。进入阶级社会以后,在商代,已经有了较成熟的夯土技术,建造了规模相当大的宫室和陵墓。西周及春秋
18、时期,统治阶级营造很多以宫市为中心的城市。原来简单的木构架,经商周以来的不断改良,已成为中国建筑的主要结构方式。瓦的出现与使用,解决了屋顶防水问题,是中国古建筑的一个重要进步。近代,中国建筑也在现代化的趋势下和世界潮流中,作出了自己的奉献。同时也形成了一种被称为世界主义的思潮,推行国际式风格,漠视各民族各地区建筑文化特性。这种思潮经过一再的鼓吹,已经产生了不可无视的负面效应,甚至成为后殖民主义借以泯灭开展中国家民族文化意识的武器。创造出既具有时代精神同时又富涵中国特色的新建筑,是摆在当代中国建筑艺术家肩上的迫切而神圣的使命。国家体育场(“鸟巢) 是2021年北京奥运会主体育场。“鸟巢外形结构主
19、要由巨大的门式钢架组成,共有24根桁架柱。国家体育场建筑顶面呈鞍形,长轴为,短轴为,最高点高度为,最低点高度为。体育场外壳采用可作为填充物的气垫膜,使屋顶到达完全防水的要求,阳光可以穿过透明的屋顶满足室内草坪的生长需要。比赛时,看台是可以通过多种方式进行变化的,可以满足不同时期不同观众量的要求,奥运期间的20,000个临时座席分布在体育场的最上端,且能保证每个人都能清楚的看到整个赛场。入口、出口及人群流动通过流线区域的合理划分和设计得了完美得到的解决。鸟巢设计中充分表达了人文关心,碗状座席环抱着赛场的收拢结构,上下层之间错落有致,无论观众坐在哪个位置,和赛场中心点之间的视线距离都在140米左右
20、。 “鸟巢的下层膜采用的吸声膜材料、钢结构构件上设置的吸声材料,以及场内使用的电声扩音系统,这三层“特殊装置使“巢这个数字保证了坐在任何位置的观众都能清晰地收听到播送。“鸟巢的相关设计师们还运用流体力学设计,模拟出91000个人同时观赛的自然通风状况,让所有观众都能享有同样的自然光和自然通风。 “鸟巢的观众席里,还为残障人士设置了200多个轮椅座席。这些轮椅座席比普通座席稍高,保证残障人士和普通观众有一样的视野。赛时,场内还将提供供助听器并设置无线播送系统,为有听力和视力障碍的人提供个性化的效劳。许多其他建筑界专家都认为,“鸟巢将不仅为2021年奥运会树立一座独特的历史性的标志性建筑,而且在世
21、界建筑开展史上也将具有开创性意义,将为21世纪的中国和世界建筑开展提供历史见证。第五个方面,建筑数学的未来。有人曾经说过,如果在每一种科学后面加上数学二字,便成了边缘学科。那么,在建筑后面加上数学二字,是不是成了边缘学科呢?我想说“是也不是。说“是,就是说应该成认这种分类,说“不是,就是说“建筑数学到目前还没有到达自成体系。这就是我们现在人应该努力去做的事。这里,我们来展望一下建筑数学的未来。我们知道,“建筑 作为人类衣食住行生存环节中的重要一环。有着从人类穴居,巢居到现代摩天大夏这样一个漫长的开展历程,如今,建筑业作为我们国民经济建设中的一个支柱产业,一个朝阳产业,其开展前景是十分美好的。建
22、筑工业化、建筑现代化已经开始或正在成为不争的事实。从我国一些开展较快的地区到世界兴旺社会的很多地方,装配式建筑生产的工艺化,多功能数化住宅的设计,以及建筑新材料、新工艺的不断更新及运用,为建筑数学的开展开辟了一个全新的天地。近些年来来我国高校模型教育,正逐渐影响到中专数学教学。那么,数学模型教育是什么呢?我们可从当代两个显著特点来观察:一是计算机的迅速开展和普及,计算技术和软件的广泛使用,不但代替了许多人工推导和运筹,而且正在改变着人们对数学知识的需求,冲击着传统的观念和方法;二是数学的应用向社会和自然界的各个领域渗透,大量新兴的数学正在被有效地应用于科学研究、工农业生产、经济与管理之中,从而
23、大大增强了数学解决现实问题的手段并且扩大了数学与实际的接触面。过去的种种原因,数学教学相当程度地离开了现实,只见定义、定理、推导和证明,这种倾向必须采取有效的措施加以克服。数学模型教育正反映了这样一种努力,它是应用数学知识解决实际问题桥梁,是培养学生综合运用数学知识、提高学生分析解决问题的意识、兴趣和能力的重要途径。从建筑的角度看数学建模,就是用数学语言与方法抽象简化并刻划建筑设计、建筑施工、建筑管理等建筑工程中的实际问题,再通过一定的技术手段如编程计算来求解和作图。在我省的建筑设计院,近年来建筑设计的全套图纸均采用计算机绘图,就是在建筑领域采用数学建模的最好范例。我们认为,对于建筑学校进行数
24、学建模的教学,其指导思想、目标和要求是:1培养学生的“翻译能力,通过抽象和简化,把实际问题表达为数学模型并进行推演和计算;2应用已学过的和在本课程中补充的数学方法和思想,进行综合分析并创新;3开展联想能力和洞察力,重视学生的素质培养;4熟练使用技术手段,主要指计算机及相应的各种数学软件。数学建模给建筑业的开展带来的好处将是显而易见的。首先它使建筑师从烦琐复杂而又十分简单的劳动中解放出来,使建筑师得以把聪明才智更多地用到创造性的工作上去。可以说,随着数学建模在建筑业的普及和推广,建筑师把聪明给了计算机,计算机将使建筑师更聪明。当代数学进展非常迅速,展望未来,建筑数学如同欣欣向荣的建筑业一样,前程似锦。但是我们只有通过不懈的努力,越过一座座高山。涉过一条条激流,迎来的将是建筑数学美好的明天。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1