第1章GIS与Arc View.docx

上传人:b****8 文档编号:9924777 上传时间:2023-02-07 格式:DOCX 页数:25 大小:562.87KB
下载 相关 举报
第1章GIS与Arc View.docx_第1页
第1页 / 共25页
第1章GIS与Arc View.docx_第2页
第2页 / 共25页
第1章GIS与Arc View.docx_第3页
第3页 / 共25页
第1章GIS与Arc View.docx_第4页
第4页 / 共25页
第1章GIS与Arc View.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

第1章GIS与Arc View.docx

《第1章GIS与Arc View.docx》由会员分享,可在线阅读,更多相关《第1章GIS与Arc View.docx(25页珍藏版)》请在冰豆网上搜索。

第1章GIS与Arc View.docx

第1章GIS与ArcView

第一章GIS与ArcView

第一节地理信息系统简介

一、什么是地理信息系统

在信息化高速发达的现代社会,至少在知识界,人们对“信息系统”都不感陌生,各种各样的管理信息系统、咨询服务系统、决策支持系统乃至专家系统在夜以继日地帮助人们进行着规划、管理、决策、事务处理及信息咨询,极大地提高了人们的工作效率和方便了人们的生活。

但在更多的时候,人们规划、管理、决策、事务处理及信息咨询的信息内容常常要求必须与周围的地理环境和地理位置相联系,就像人们经常使用的地图或图纸,不仅要求能表达事件发生的过程和结果,还要求能表达事件发生的地点、周围环境、以及与其它事物之间的空间相互关系等,这就产生了地理信息系统(GeographicInformationSystem,简称GIS)。

从地理信息系统的专业角度看,可以将人们经常使用的信息划分为两类信息—即空间信息和非空间信息,所谓空间信息,就是信息内容本身就包含有形状、分布、空间定位、空间相互关系等内容的信息。

如一条道路,一座桥梁,或一幢建筑物,一个行政区,一个天体等的几何形状及其所处的空间位置等。

地理信息是人们应用最多的空间信息,根据统计,人们日常使用的信息80%以上都是地理信息。

远在四千多年前,人们就知道了使用地图,从而掌握与地理空间信息打交道的直观、简易的方法。

而现代科学技术的发展,已将人们带入了一个前所未有的信息时代,计算机的使用和数据库技术的快速发展更使得人们学会了用信息系统管理和使用信息。

地理信息系统就是能够输入、存储、管理并处理分析地理空间数据的信息系统。

地理信息系统是信息系统技术发展到高级阶段的产物,这不仅是随计算机软件技术发展的“应运而生”,其实在很大程度上也得益于计算机硬件水平的发展,试想,一个有实际应用价值的地理信息系统少则几十兆、大则数十G(1G=109)字节或更大规模的图形或图像信息,其存储、显示和快速的处理分析,对早期的计算机系统,特别是早期的微型计算机系统来说是多么的不可思议!

二、地理信息系统的产生

地理信息系统最早萌芽于北美,上世纪60年代初,加拿大的RogerF.Tomlinson和美国的DuaneF.Marble在不同的地方、从不同角度提出了地理信息系统的构想。

Tomlinson于1962年提出利用数字计算机处理和分析大量的土地利用数据,便建议加拿大土地调查局建立加拿大地理信息统(CGIS)。

到1972年,CGIS全面投入运行,成为世界上第一个运行的地理信息系统。

CGIS提出的地理数据模型、栅格-矢量数据相互转换、空间数据、属性数据连接及空间数据空间上分块、内容上分层等基本的设计思想,为地理信息系统技术的后来发展起到了奠基的作用。

几乎在同一时间,DuaneF.Marble在美国的西北大学研究了利用数字计算机研制数据处理软件系统,以支持大规模城市交通研究,并提出了地理信息系统软件系统的思想。

来此美国西北技术研究所的HowardFisher教授在福特基金的资助下,建立了哈佛大学计算机图形与空间分析实验室,开发了SYMAP\ODYSSEY等软件包,其中,SYMAP对当今的栅格地理信息系统有相当影响,而ODYSSEY则被认为是当代矢量地理信息系统的原型。

其实,地理信息系统是计算机地理制图和计算机图像处理技术发展的必然产物。

在上世纪60年代,随世界经济的快速发展,对地形图的数量和质量提出了更高要求,一般的手工作业方式已远远不能满足地形图生产的要求,也不能对地面日新月异的发展变化及时更新,而计算机技术的发展,就使得使用计算机进行地图制图成为了客观上的必然。

而另一方面,航空和航天遥感技术的发展,又使得人们必须寻找遥感资料的快速与高精度的处理方法,这同样要用到计算机,这几方面的共同要求,就必然刺激到计算机图像处理技术的快速发展。

由于计算机地理制图和计算机图像处理均主要是对地面地理对象进行的,两者之间必然有相同的基础和存在着许多共同的部分,如投影、误差、控制点、比例尺等基本制图信息,以及地名、行政界、交通、河流、居民点等基本地理信息,更重要的一点,是两者又往往是同一技术过程的不同阶段,也就是说,计算机图像处理和计算机地理制图往往是同一批人,从事同一项研究而进行的不同阶段的工作,所以,人们很自然地会将它们结合起来。

随着技术的发展,将两者基础的部分和共同的部分统一为一致的理论与一致的方法,从而产生了地理信息系统。

当由计算机地理制图和计算机图像处理产生了地理信息系统,地理信息系统就不再是纯粹的计算机地理制图系统或纯粹的计算机图像处理系统,也再不是此两者功能的简单加和,它有了更广阔的应用领域和更深层的用途。

三、当代GIS的发展趋势

地理信息系统自上世纪60年代产生以来,发展已接近四十年的历程,其极大地拓宽了信息系统技术的应用范围和应用深度,特别随计算机硬、软件技术的快速发展,地理信息系统技术也发生着日新月异的变化,目前正处在一个极快的发展阶段,其应用已不仅局限于测绘、地矿、制图、资源与环境管理等传统领域,其在设施管理、交通管理、工程建设、城市规划、灾害防治、灾害评估、文物考古等领域中也愈来愈扮演着重要的角色。

此外,地理信息系统还进入了军事战略分析、商业策划和文化教育等更为广泛的领域,甚至还和其他科学技术结合,进入了普通人的生活,其目前的发展趋势,主要集中在以下几点:

1.面向大型的应用和面向公众的应用均加速发展

在大型工程方面,如美国内务部土地管理局的自动土地与矿产资源系统(ALMRS)和森林局615工程,仅硬件和软件的耗资就高达12亿多美元,美国海军的海图计划,建库的费用也在数亿美元。

另一方面,一些面向公众的应用,如城市交通咨询、旅游景点咨询等也通过计算机网络将各种空间信息传送到千家万户。

如美国已有城市试验通过电视有线网向公众发布城市交通、市政设施等空间信息,香港地政署与香港旅游协会(TA)也正着手建立香港旅游信息系统。

该系统的基础数据直接来源于地政处的大型数据库,旅游信息则由旅游部门提供。

计划首先在尖沙嘴等旅游热点安装触摸屏,游客可以通过触摸屏直接了解香港的地理和旅游信息。

2.GIS应用的微机化

随计算机硬件技术的飞速发展,使原来主要运行于图形工作站上的地理信息系统大都转而面向个人电脑和微计算机系统。

这一变化的实践意义远远超过了它在技术上的进步,由于微机的数量之多,分布之广远非任何计算机系统之可比,这实际上也就使得GIS这一新颖的技术可以迅速地普及到千家万户和社会的各个领域,成为“寻常百姓”可以共享的技术,这无疑极大地拓宽了GIS的市场,也同时刺激了GIS技术的快速发展。

3.GIS的网络化和WebGIS

随计算机网络技术的发展及普及,基于网络的分布式地理信息系统已成为大、中型地理信息工程的必然选择。

特别是基于政府的,或基于大、中行业的信息系统要求能实时、快速地连接各行政组织和基层单位快速变化着的各种信息,以便及时调整方案或做出决策,就必须建立全组织的基于网络的地理信息系统。

而有的地理信息系统,如城市交通管理信息系统、铁路运输调度系统等,其环境就必须是基于网络的。

另一方面,Intenet的快速普及也极大地改变了人们的工作和生活,基于IntenetBrowser/Server的应用形式已成为一种工业标准,被广泛地应用于信息的发布、检验等诸多领域,成为世界上最大的信息网。

因而在Intenet上发布和传输地理信息,使人们也能像在地理信息系统中一样用浏览器浏览和查询地理信息,甚至进行简单的地理分析,也成为众所向往的一种趋势。

4.GIS与遥感及GPS的结合

遥感实时、快速和大范围获得地面变化着的各种地理信息的能力使得遥感和GIS相结合的系统在许多关乎国民经济、人民生命财产安全和国家中、长期战略规划的应用中表现出了无可比拟的优越性。

如在农作物估产、水土资源利用规划、交通能源规划、环境监测、森林火灾预警、干旱洪涝灾害防治等领域,地理信息系统和遥感数据采集系统相互配合、互为补充,就能及时、准确地将遥感实时观测数据与GIS中的基础地理数据、DEM、地名数据、社会经济统计数据相综合,并通过GIS各种预设的空间分析模型的计算分析,获得各种需要的分析结果和决策信息。

GPS(GlobalPositionSystem,即“全球定位系统”)也是一种快速、高精度的获得地面定位信息的新技术,GIS和GPS相结合的系统在城市交通管理、智能化交通指导系统中显示了强大的功能,如通过车载GPS系统,出租车公司就可以对全公司的车辆进行动态管理,并可以在车内进行路线选择;GPS用于野外调查,可以大大提高野外调查的工作效率等等,GIS与GPS的结合,也是GIS当前应用领域发展的重要方向之一。

5.GIS的智能化

GIS的智能化,也就是GIS与专家系统的结合。

随当前地理信息系统应用的广泛和深入,大型应用中要求处理或要求决策的问题愈来愈复杂,其中相当一部分问题是数学模型或其它模型也难以胜任的,这就要求地理信息系统与专家系统相结合,以借助于专家们的知识和经验,模拟专家们的决策方法,从而使复杂的决策问题简化。

第二节GIS的数据模型

在数字计算机中,GIS自然也是用数字来描述地理实体(或称为“地理对象”)的,地理实体在GIS中的这种数字组织与表达形式,即GIS的数据模型。

GIS中,用于表示地理对象位置、分布、形状、空间相互关系等信息内容的数据,被称为“空间数据”;而表示地理对象与空间位置无关的其它信息,如颜色、质量、等级、类型等其它信息内容的数据,被称为“属性数据”。

一般来讲,前者有较为复杂的数据结构,而后者却有较为丰富的数据形式。

目前,表示地理对象空间特征的数据,主要有两种数据模型—即矢量数据模型和栅格数据模型,而地理对象属性数据的表示,则随其对应的空间数据模型的不同而有所不同。

详如图1-1。

一、矢量数据模型

矢量数据模型是GIS主要的数据模型之一。

类似于矢量地图,GIS的矢量数据模型也是用点、线(或称“弧”)、面(或称“多边形”)三种主要的图形元素来抽象表示地理对象的。

由于面(多边形)是线(弧)所围成的区域,线(弧)又是点的有向序列,所以,坐标点是矢量数据模型最基本的数据元素。

所以说:

GIS的矢量数据模型,就是以坐标点的方式,记录抽象的点、线、面地理实体。

从理论上说,矢量数据描述的是连续空间,因而它能精确地表达地理实体的形状与位置,又可以通过点、线、面三种基本图元之间的联系,构筑地理实体及其图形表示的邻接、连通、包含等拓扑关系,从而有利于地理信息的查询、网络路径优化、空间相互关系分析等地理应用。

GIS的矢量数据模型可以用相对较少的数据量,记录大量的地理信息,而且精度高,制图效果好,在地理信息系统发展早期,受计算机存储能力及计算速度的限制,其扮演了更为重要的角色,是地理信息系统基本的数据模型之一。

二、栅格数据模型

栅格数据就是用数字表示的像元阵列,其中,栅格的行和列规定了实体所在的坐标空间,而数字矩阵本身则描述了实体的属性或属性编码。

栅格数据是计算机和其它信息输入输出设备广泛使用的一种数据模型,如电视机、显示器、打印机等的空间寻址。

甚至专门用于矢量图形的输入输出设备,如数字化仪、矢量绘图仪及扫描仪等,其内部结构实质上也是栅格的。

栅格数据最显著的特点就是存在着最小的、不能再分的栅格单元,在形式上常表现为整齐的数字矩阵,因而便于计算机进行处理,特别是存储和显示。

遥感数据是采用特殊扫描平台获得的栅格数据,遥感快速、实时和大面积获取地面信息的能力是地理信息系统最重要的数据来源之一,实践中更有以处理遥感影像数据为主的系统,因而实用的地理信息系统必然要求能够有效地处理来自遥感的栅格数据。

DTM(数字地形模型)和DEM(数字高程模型)是GIS专门的研究与应用领域之一,其有着十分广泛的用途,而DTM及DEM常用的、也是最简单的表示形式就是栅格数字阵列,这些,都对地理信息系统处理栅格数据的能力提出了很高要求。

此外,栅格数据存在着的“最小数据单元”,非常适宜于地理信息的“模型化”。

因为无论怎样复杂的模型算法,在一个栅格单元内就成为了纯粹的属性运算。

随计算机硬、软件技术的发展与突破,栅格数据占用存储空间大、图形数据精度差等传统的缺点对一个实际运行的应用系统来说已愈来愈显得不严重了,从而成为解决许多复杂实际应用问题的有力武器。

近年来,许多研究者在栅格数据模型和属性数据模型之外,探索一种矢量—栅格一体化的数据模型,以实现这两种数据模型的统一。

但这一探索目前尚仍处于研究阶段,其真正的实现还有待时日。

三、属性数据及其表示

GIS中地理对象与位置、分布、形状等空间信息无关的特性,用属性数据来表示。

在矢量数据模型中,空间数据的单元是抽象化的点、线、面数据对象,其属性数据的具体内容,一般要比空间数据灵活,原因是其在很大程度上依赖于系统设计对属性数据的内容和处理要求。

如“道路”属性的描述,可以有名称、起点、到达点、长度、路宽、路面性质、路面等级、林荫带的有无、最大容许车速、最大容许承压等等。

这些属性数据,对不同的信息系统,就有着各种选择的较大灵活性:

如对于城市交通管理信息系统来说,这大部分内容都是必需的,甚至还要补充;而对于城市人口信息系统来说,以上数据信息未必都是必需的。

另对与同样是“线”实体的河流来说,则属性数据又会有更大的不同,所以,同是点、线或面的空间数据类型,其属性数据会千差万别,或完全不同。

属性数据这种随应用而变化的随意性,决定了它不可能有统一的数据格式,因而从数据结构角度也难建立各数据项之间的彼此联系,所以,GIS矢量数据模型下的属性数据,一般处理为“属性向量”形式——即将各属性项看作是彼此无关的独立量”(如图1-2):

至于栅格数据,由于数据单元对应的是区域空间,区域空间在一般情况下都不具有一致的属性值,所以要表示区域空间内地物的属性,就只能对整个区域空间使用一种属性类的划分,这就是该栅格阵列的内容或“主题”。

栅格数据这种以“主题”命名属性类别的方法我们姑且称之为“主题模型”。

也就是说,一个栅格矩阵单元对应一种属性主题,如DEM、地面坡度、坡向、土地利用类型等等,至于每一栅格单元的具体内容,不过是同一主题下的不同取值罢了。

四、空间数据与属性数据的连接

在GIS的矢量数据模型中,由于空间数据和属性数据采用了完全不同的数据结构模式,为实现空间数据对象与其属性数据的统一,就必须将这两者连接起来。

这通常通过一个共同的内部标识来实现。

ID

属性1

属性2

属性3

……

属性M

ID

 

图1-3空间数据与属性数据的连接

第三节地理信息系统的空间分析功能

地理信息系统区别于其它管理信息系统的最主要特征,就是其具有管理地理空间数据,并能按照其在实际空间的相对位置关系对之进行处理分析的能力。

其对地理空间数据的这种处理分析功能,组成了地理信息系统实际应用的主要方面。

此处拟对GIS中常用的空间分析功能作概括性介绍,有关空间分析方法及其在ArcView中应用的细节,将作为本书的重点内容在第八章“空间分析导论”及其以后的章节中陆续介绍。

一、数字地面模型

1、数字地面模型

数字地面模型(DigitalTerrainModel,简称DTM),通常定义为描述地面特征空间分布的有序数值阵列。

其坐标空间用X,Y或经、纬度来定义,地面特征可以是地貌、土壤、土地利用、土地权属等等。

DTM可以是每三个坐标值为一组元的散点结构,也可以是整体的数字阵列,或由多项式或傅立叶级数所确定的曲面方程。

数字地面模型是对区域地理空间数字描述的基本形式和基本手段之一,是进行地理空间分析的基础数据。

2、数字高程模型(DigitalElevationModel,简称DEM)

将数字地面模型的地面特征用于描述地面高程,这时的DTM被称为“数字高程模型”,简称DEM。

数字高程模型是建立各种数字地形模型的基础,通过DEM,可以方便地获得地表的各种特征参数,其应用可遍及整个地学领域。

在测绘中其可用于绘制等高线、坡度图、坡向图、立体透视图、立体景观图,并应用于制作正射影像图、立体匹配片、立体地形模型及地图的修测;在各种工程中可用于体积和面积的计算、各种剖面图的绘制及线路的设计;军事上可用于导航(包括导弹及飞机的导航)、通讯、作战任务的计划等;遥感中可作为分类的辅助数据;在环境与规划中可用于土地现状的分析、各种规划及洪水险情预报等。

二、空间统计分析

空间统计分析即以空间地理实体为对象,就其形状、分布、空间相互关系而进行的统计分析。

空间统计分析在动、植物分布及生物种群研究,景观生态学,环境保护等领域有广泛的用途。

如在景观生态学及相关研究中,常用的多样性指数(如丰富度、均匀度、优势度等),镶嵌度指数(如集聚度),距离指数(如最小距离指数、连接度指数等),生境破碎化指数等,都可以通过对地理空间数据的坐标和属性数据,进行诸如空间自相关分析、变异矩和相关分析、波谱分析、空间趋势面分析及空间插值方法得到。

三、空间叠置分析

空间叠加就是将两个或多个图层以相同的空间位置重叠在一起,经过图形和属性运算,产生新的空间区域的过程。

叠加的每幅图层称为一个叠置层,每个叠置层带有一个将用于综合运算的属性,一个叠置层反映了某一方面的专题信息。

叠加中的图形运算的复杂程度视数据结构的不同而有所不同。

栅格数据由于已是对空间的规则划分,所以没有空间图形的运算,因为各个栅格的位置、大小对叠置层都应该是一致的。

相比之下,矢量图的叠加就要复杂得多,这种复杂性来源于对空间线划相交的判断与计算,以及空间对象拓扑结构的重建等。

由于矢量数据的图形精度高于栅格数据的精度,矢量数据叠加的结果一般也优于栅格数据叠加的结果。

空间实体有点、线、面三种基本类别,叠加运算一般是在面状数据层之间或点、线要素数据层对面状数据层进行的,极少数情况也涉及到点-线的叠加操作。

四、缓冲区分析

缓冲区是以某类图形元素(点、线或面)为基础拓展一定的宽度而形成的区域。

缓冲区在实际工作中具有重要意义,如查找一个噪声点源的影响范围可以以该点源为中心建立一个缓冲区,缓冲区的半径即最远的影响距离;又如一个飞机场噪声的影响范围是以飞机跑道为基准向外扩展的范围;在城市建设中,常常涉及拓宽道路的问题,拓宽道路需要计算房屋拆迁量,这需先用现有道路边线向外扩展一定的宽度而形成一个缓冲带,将该缓冲带与有关建筑物的数据层进行对比分析(或叠加分析),即可计算出拆迁量。

缓冲操作后形成一个或多个多边形区域,单独的缓冲区操作并没有太大的实际意义。

缓冲区功能必须与其它的空间分析一起使用才能发挥应有的作用。

如前面的道路扩建例子,如果没有房屋层数据,不利用叠加功能,那么拆迁量是无法计算的。

因此,缓冲区操作应理解为达到某种目的而进行的一系列空间分析中的一个部分,其数据可能来源于其他分析结果,其成果也将为进一步的分析提供数据。

另外缓冲区操作可以是以矢量数据结构为基础进行的,也可以是以栅格数据结构为基础而进行。

栅格数据的缓冲区操作具有相同的规律,只是运算更为简单,并且具有明显的扩展(见随后的介绍)特色。

五、空间扩展(Spread)

缓冲区的区域内部是同值的,没有远、近与强、弱之分。

如一个人从某点出发,十分钟所能走的路程范围是以该点为中心的一个圆,在缓冲区操作中该圆的内部被认为具有一致的属性,这上述例子中,即为统一的“十分钟路程”区域。

现假定要考察该区域内部的情况,如想知道每分钟向外行走的区域分布,此类问题就是所谓的空间扩展问题。

空间扩展是从一个或多个目标点开始逐步向外移动并同时计算某些变量的过程,适用于评定随距离而累加的现象。

如以上例子中,向外行走累计的是时间,该值随距离的增大而增大。

扩展功能的突出特点是对每一步的评价函数的累计值都进行了记录,常见的评价函数为距离求和、时间求和(累计),其间也考虑到限制性因素。

六、网络分析

对地理网络进行地理分析和模型化,是地理信息系统中网络分析功能的主要目的。

网络分析是运筹学的一个基本模型,它的根本目的是研究、筹划一项网络工程如何安排,并使其运行效果最好。

这类问题在生产、社会、经济活动中不胜枚举,因此研究此类问题也具有重大意义。

所谓网络(Network),是指线状要素相互联接所形成的一个线状模式,如道路网、管线网、电力网、河流网等。

网络的作用是将资源从一个位置移动到另外一个位置。

资源在运送过程中会产生消耗、堵塞、减缓等现象,这表明网络系统中必须有一个合理的体制,使得资源能够顺利地流动。

网络功能用于模拟那些难以直接量测的行为。

一个网络模型中,实际的网络要素由一套规则及数学函数描述。

而基于空间信息系统的空间网络分析则往往是将这些规则及数字上的描述通过某些形式转换到空间及属性数据库中,以便于运算。

网络分析是在线状模式基础上进行的,线状要素间的联接形式十分重要,而这种联接以矢量数据结构最能描述,因而一般系统中的网络功能都以矢量数据来实现。

但是,栅格数据模型通常也能完成类似的功能,极少数情况下可能更为方便。

网络分析的形式可有多种,常用的三类分析功能为:

网络负荷的预测、线路优化(最优路径)和资源分配。

七、三维分析

三维信息是二维平面信息向立体方向的扩展,日常人们所见的地形起伏,高矗的建筑物等都是三维的概念,它们是现实世界的真实体现。

而从测绘的角度讲,地形图纸是一个平面,它不能直观描述真实世界的三维景观,于是只能在测绘图上间接地表示出来,如用等高线方式描述地形的起伏状况,用层数标注来大体说明建筑物的高度等等。

随着对二维平面数据结构及其分析方法研究取得比较成熟的成果,对三维方法的研究势在必然。

三维分析功能也逐渐成为地理信息系统功能的一个重要构成部分。

第四节ArcViewGIS简介

ArcView是美国ESRI(环境系统研究所)的GIS产品,ESRI是地理信息系统业界的巨子,其发展基本上代表了国际地理信息系统技术的最前沿水平,ESRI另一与ArcView相蓖美的GIS产品即著名的Arc/Info,它们都以技术可靠、算法先进、实用性强而著称于世。

相对于ArcView,Arc/Info更专业化和适于解决更复杂、更专业化的空间分析问题,而ArcView却是新一代桌面地理信息系统的代表,其方便、灵活、操作简单、通用性强,特别适用于地理信息系统应用的普及和对传统信息系统的GIS化。

一、桌面地理信息系统

何谓桌面地理信息系统?

GIS界目前还没有一个完全一致的定义。

一般认为:

所谓桌面地理信息系统,就是运行于桌面计算机(图形工作站及微型计算机的统称)上的地理信息系统。

但也有人认为,桌面地理信息系统是不以专门的地理信息工程为目标,而是通过地图界面查询各种信息并融合常用地理分析技术的信息系统。

总之,桌面地理信息系统可理解为是运行于较低硬件性能指标上的较为大众化、普及化的地理信息系统。

桌面地理信息系统是地理信息系统走向普及和社会化的标志,其技术水平也反映了地理信息系统技术的应用水平和普及化程度。

从这点上说,桌面地理信息系统也是一项发展的技术。

随GIS总体技术的发展和GIS应用的普及,桌面地理信息系统的功能也在不断的增强与发展之中,今天有代表性的桌面地理信息系统,已不是早期的只为管理信息系统提供地图查询界面和实现简单功能的地理分析,而是不断融合了地理信息系统各种成熟了的实用技术,如空间分析、网络分析、三维分析等等,使得原来只在极专业化地理信息系统中出现的地理分析模型也进入了桌面地理信息系统,这其中,ArcView可谓是它们的典型代表。

二、ArcView的基本功能模块及其扩充

ArcView采用了可扩充的结构设计,整个系统由基本模块和可扩充功能模块构成。

其基本模块包括对视图(Views)、表格(Tabies)、图表(Charts)、图版(Layouts)、和脚本(ScriPts)的管理。

这些基本功能模块,可以完成:

1、创建基于GIS的电子地图

ArcView的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1