小波功率谱相关译文.docx

上传人:b****8 文档编号:9886474 上传时间:2023-02-07 格式:DOCX 页数:16 大小:111.16KB
下载 相关 举报
小波功率谱相关译文.docx_第1页
第1页 / 共16页
小波功率谱相关译文.docx_第2页
第2页 / 共16页
小波功率谱相关译文.docx_第3页
第3页 / 共16页
小波功率谱相关译文.docx_第4页
第4页 / 共16页
小波功率谱相关译文.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

小波功率谱相关译文.docx

《小波功率谱相关译文.docx》由会员分享,可在线阅读,更多相关《小波功率谱相关译文.docx(16页珍藏版)》请在冰豆网上搜索。

小波功率谱相关译文.docx

小波功率谱相关译文

译文

THECONTINUOUSWAVELETTRANSFORM

ThecontinuouswavelettransformwasdevelopedasanalternativeapproachtotheshorttimeFouriertransformtoovercometheresolutionproblem.ThewaveletanalysisisdoneinasimilarwaytotheSTFTanalysis,inthesensethatthesignalismultipliedwithafunction,{\itthewavelet},similartothewindowfunctionintheSTFT,andthetransformiscomputedseparatelyfordifferentsegmentsofthetime-domainsignal.However,therearetwomaindifferencesbetweentheSTFTandtheCWT:

1.TheFouriertransformsofthewindowedsignalsarenottaken,andthereforesinglepeakwillbeseencorrespondingtoasinusoid,i.e.,negativefrequenciesarenotcomputed.

2.Thewidthofthewindowischangedasthetransformiscomputedforeverysinglespectralcomponent,whichisprobablythemostsignificantcharacteristicofthewavelettransform.

Thecontinuouswavelettransformisdefinedasfollows

Equation3.1

Asseenintheaboveequation,thetransformedsignalisafunctionoftwovariables,tauands,thetranslationandscaleparameters,respectively.psi(t)isthetransformingfunction,anditiscalledthemotherwavelet.Thetermmotherwaveletgetsitsnameduetotwoimportantpropertiesofthewaveletanalysisasexplainedbelow:

Thetermwaveletmeansasmallwave.Thesmallnessreferstotheconditionthatthis(window)functionisoffinitelength(compactlysupported).Thewavereferstotheconditionthatthisfunctionisoscillatory.Thetermmotherimpliesthatthefunctionswithdifferentregionofsupportthatareusedinthetransformationprocessarederivedfromonemainfunction,orthemotherwavelet.Inotherwords,themotherwaveletisaprototypeforgeneratingtheotherwindowfunctions.

ThetermtranslationisusedinthesamesenseasitwasusedintheSTFT;itisrelatedtothelocationofthewindow,asthewindowisshiftedthroughthesignal.Thisterm,obviously,correspondstotimeinformationinthetransformdomain.However,wedonothaveafrequencyparameter,aswehadbeforefortheSTFT.Instead,wehavescaleparameterwhichisdefinedas$1/frequency$.ThetermfrequencyisreservedfortheSTFT.Scaleisdescribedinmoredetailinthenextsection.

TheScale

Theparameterscaleinthewaveletanalysisissimilartothescaleusedinmaps.Asinthecaseofmaps,highscalescorrespondtoanon-detailedglobalview(ofthesignal),andlowscalescorrespondtoadetailedview.Similarly,intermsoffrequency,lowfrequencies(highscales)correspondtoaglobalinformationofasignal(thatusuallyspanstheentiresignal),whereashighfrequencies(lowscales)correspondtoadetailedinformationofahiddenpatterninthesignal(thatusuallylastsarelativelyshorttime).Cosinesignalscorrespondingtovariousscalesaregivenasexamplesinthefollowingfigure.

Figure3.2

Fortunatelyinpracticalapplications,lowscales(highfrequencies)donotlastfortheentiredurationofthesignal,unlikethoseshowninthefigure,buttheyusuallyappearfromtimetotimeasshortbursts,orspikes.Highscales(lowfrequencies)usuallylastfortheentiredurationofthesignal.

Scaling,asamathematicaloperation,eitherdilatesorcompressesasignal.Largerscalescorrespondtodilated(orstretchedout)signalsandsmallscalescorrespondtocompressedsignals.Allofthesignalsgiveninthefigurearederivedfromthesamecosinesignal,i.e.,theyaredilatedorcompressedversionsofthesamefunction.Intheabovefigure,s=0.05isthesmallestscale,ands=1isthelargestscale.

Intermsofmathematicalfunctions,iff(t)isagivenfunctionf(st)correspondstoacontracted(compressed)versionoff(t)ifs>1andtoanexpanded(dilated)versionoff(t)ifs<1.

However,inthedefinitionofthewavelettransform,thescalingtermisusedinthedenominator,andtherefore,theoppositeoftheabovestatementsholds,i.e.,scaless>1dilatesthesignalswhereasscaless<1,compressesthesignal.Thisinterpretationofscalewillbeusedthroughoutthistext.

COMPUTATIONOFTHECWT

Interpretationoftheaboveequationwillbeexplainedinthissection.Letx(t)isthesignaltobeanalyzed.Themotherwaveletischosentoserveasaprototypeforallwindowsintheprocess.Allthewindowsthatareusedarethedilated(orcompressed)andshiftedversionsofthemotherwavelet.Thereareanumberoffunctionsthatareusedforthispurpose.TheMorletwaveletandtheMexicanhatfunctionaretwocandidates,andtheyareusedforthewaveletanalysisoftheexampleswhicharepresentedlaterinthischapter.

Oncethemotherwaveletischosenthecomputationstartswiths=1andthecontinuouswavelettransformiscomputedforallvaluesofs,smallerandlargerthan``1''.However,dependingonthesignal,acompletetransformisusuallynotnecessary.Forallpracticalpurposes,thesignalsarebandlimited,andtherefore,computationofthetransformforalimitedintervalofscalesisusuallyadequate.Inthisstudy,somefiniteintervalofvaluesforswereused,aswillbedescribedlaterinthischapter.

Forconvenience,theprocedurewillbestartedfromscales=1andwillcontinuefortheincreasingvaluesofs,i.e.,theanalysiswillstartfromhighfrequenciesandproceedtowardslowfrequencies.Thisfirstvalueofswillcorrespondtothemostcompressedwavelet.Asthevalueofsisincreased,thewaveletwilldilate.

Thewaveletisplacedatthebeginningofthesignalatthepointwhichcorrespondstotime=0.Thewaveletfunctionatscale``1''ismultipliedbythesignalandthenintegratedoveralltimes.Theresultoftheintegrationisthenmultipliedbytheconstantnumber1/sqrt{s}.Thismultiplicationisforenergynormalizationpurposessothatthetransformedsignalwillhavethesameenergyateveryscale.Thefinalresultisthevalueofthetransformation,i.e.,thevalueofthecontinuouswavelettransformattimezeroandscales=1.Inotherwords,itisthevaluethatcorrespondstothepointtau=0,s=1inthetime-scaleplane.

Thewaveletatscales=1isthenshiftedtowardstherightbytauamounttothelocationt=tau,andtheaboveequationiscomputedtogetthetransformvalueatt=tau,s=1inthetime-frequencyplane.

Thisprocedureisrepeateduntilthewaveletreachestheendofthesignal.Onerowofpointsonthetime-scaleplaneforthescales=1isnowcompleted.

Then,sisincreasedbyasmallvalue.Notethat,thisisacontinuoustransform,andtherefore,bothtauandsmustbeincrementedcontinuously.However,ifthistransformneedstobecomputedbyacomputer,thenbothparametersareincreasedbyasufficientlysmallstepsize.Thiscorrespondstosamplingthetime-scaleplane.

Theaboveprocedureisrepeatedforeveryvalueofs.Everycomputationforagivenvalueofsfillsthecorrespondingsinglerowofthetime-scaleplane.Whentheprocessiscompletedforalldesiredvaluesofs,theCWTofthesignalhasbeencalculated.

Thefiguresbelowillustratetheentireprocessstepbystep.

Figure3.3

InFigure3.3,thesignalandthewaveletfunctionareshownforfourdifferentvaluesoftau.ThesignalisatruncatedversionofthesignalshowninFigure3.1.Thescalevalueis1,correspondingtothelowestscale,orhighestfrequency.Notehowcompactitis(thebluewindow).Itshouldbeasnarrowasthehighestfrequencycomponentthatexistsinthesignal.Fourdistinctlocationsofthewaveletfunctionareshowninthefigureatto=2,to=40,to=90,andto=140.Ateverylocation,itismultipliedbythesignal.Obviously,theproductisnonzeroonlywherethesignalfallsintheregionofsupportofthewavelet,anditiszeroelsewhere.Byshiftingthewaveletintime,thesignalislocalizedintime,andbychangingthevalueofs,thesignalislocalizedinscale(frequency).

Ifthesignalhasaspectralcomponentthatcorrespondstothecurrentvalueofs(whichis1inthiscase),theproductofthewaveletwiththesignalatthelocationwherethisspectralcomponentexistsgivesarelativelylargevalue.Ifthespectralcomponentthatcorrespondstothecurrentvalueofsisnotpresentinthesignal,theproductvaluewillberelativelysmall,orzero.ThesignalinFigure3.3hasspectralcomponentscomparabletothewindow'swidthats=1aroundt=100ms.

ThecontinuouswavelettransformofthesignalinFigure3.3willyieldlargevaluesforlowscalesaroundtime100ms,andsmallvalueselsewhere.Forhighscales,ontheotherhand,thecontinuouswavelettransformwillgivelargevaluesforalmosttheentiredurationofthesignal,sincelowfrequenciesexistatalltimes.

Figure3.4

Figure3.5

Figures3.4and3.5illustratethesameprocessforthescaless=5ands=20,respectively.Notehowthewindowwidthchangeswithincreasingscale(decreasingfrequency).Asthewindowwidthincreases,thetransformstartspickingupthelowerfrequencycomponents.

Asaresult,foreveryscaleandforeverytime(interval),onepointofthetime-scaleplaneiscomputed.Thecomputationsatonescaleconstructtherowsofthetime-scaleplane,andthecomputationsatdifferentscalesconstructthecolumnsofthetime-scaleplane.

Now,let'stakealookatanexample,andseehowthewavelettransformreallylookslike.Considerthenon-stationarysignalinFigure3.6.ThisissimilartotheexamplegivenfortheSTFT,exceptatdifferentfrequencies.Asstatedonthefigure,thesignaliscomposedoffourfrequencycomponentsat30Hz,20Hz,10Hzand5Hz.

Figure3.6

Figure3.7isthecontinuouswavelettransform(CWT)ofthissignal.Notethattheaxesaretranslationandscale,nottimeandfrequency.However,translationisstrictlyrelatedtotime,sin

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1