主板基本知识.docx

上传人:b****8 文档编号:9883018 上传时间:2023-02-07 格式:DOCX 页数:10 大小:21.69KB
下载 相关 举报
主板基本知识.docx_第1页
第1页 / 共10页
主板基本知识.docx_第2页
第2页 / 共10页
主板基本知识.docx_第3页
第3页 / 共10页
主板基本知识.docx_第4页
第4页 / 共10页
主板基本知识.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

主板基本知识.docx

《主板基本知识.docx》由会员分享,可在线阅读,更多相关《主板基本知识.docx(10页珍藏版)》请在冰豆网上搜索。

主板基本知识.docx

主板基本知识

主板基本知识

1.BIOS和CMOS简介:

(1)BIOS:

BIOS是BasicInput-OutputSystem的缩写。

它是PC的基本输入输出系统,是一块装入了启动和自检程序的EPROM或EEPROM集成电路,也就是集成在主板上的一个ROM(只读存储)芯片。

其中保存有PC系统最重要的基本输入/输出程序、系统信息设置程序、开机上电自检程序和系统启动自举程序。

(2)CMOS:

CMOS英文全称Comple-mentaryMetal-Oxicle-Semiconductor,中文译为"互补金属氧化物半导体"。

CMOS是微机主板上的一块可读写的RAM芯片。

主要用来保存当前系统的硬件配置和操作人员对某些参数的设定。

CMOSRAM芯片由系统通过一块后备电池供电,因此无论是在关机状态中,还是遇到系统掉电情况,CMOS信息都不会丢失。

由于CMOSROM芯片本身只是一块存储器,只具有保存数据的功能,所以对CMOS中各项参数的设定要通过专门的程序,现在多数厂家将CMOS设置程序做到了BIOS芯片中,在开机时通过按下“DEL”键进入CMOS设置程序而方便地对系统进行设置,因此CMOS设置又通常叫做BIOS设置。

(3)BIOS和CMOS的关系:

BIOS中的系统设置程序是完成CMOS参数设置的手段;CMOSRAM既是BIOS设定系统参数的存放场所,又是BIOS设定系统参数的结果。

因此他们之间的关系就是“通过BIOS设置程序对CMOS参数进行设置”。

(4)BIOS和CMOS的区别:

(感谢网友deng1231000提供建议)

CMOS只是一块存储器,而BIOS才是PC的“基本输入输出系统”程序。

由于BIOS和CMOS都跟系统设置密切相关,所以在实际使用过程中造成了BIOS设置和CMOS设置的说法,其实指的都是同一回事,但BIOS与CMOS却是两个完全不同的概念,千万不可搞混淆。

2.PCB简介:

PCB,即印刷电路板(Printedcircuitboard,PCB)。

它几乎会出现在每一种电子设备当中。

如果在某样设备中有电子零件,那么它们也都是镶在大小各异的PCB上。

除了固定各种小零件外,PCB的主要功能是提供上头各项零件的相互电气连接。

随着电子设备越来越复杂,需要的零件越来越多,PCB上头的线路与零件也越来越密集了。

电脑的主板在不放电阻、芯片、电容等零件的时候就是一块PCB板。

3.主板的南北桥芯片:

(1)北桥芯片(NorthBridge)是主板芯片组中起主导作用的最重要的组成部分,也称为主桥(HostBridge)。

一般来说,芯片组的名称就是以北桥芯片的名称来命名的,例如英特尔845E芯片组的北桥芯片是82845E,875P芯片组的北桥芯片是82875P等等。

北桥芯片负责与CPU的联系并控制内存、AGP或PCI-E数据在北桥内部传输,提供对CPU的类型和主频、系统的前端总线频率、内存的类型(SDRAM,DDRSDRAM以及RDRAM等等)和最大容量、AGP或PCI-E插槽、ECC纠错等支持。

整合型芯片组的北桥芯片还集成了显示核心。

北桥芯片就是主板上离CPU最近的芯片,这主要是考虑到北桥芯片与处理器之间的通信最密切,为了提高通信性能而缩短传输距离。

因为北桥芯片的数据处理量非常大,发热量也越来越大,所以现在的北桥芯片都覆盖着散热片用来加强北桥芯片的散热,有些主板的北桥芯片还会配合风扇进行散热。

因为北桥芯片的主要功能是控制内存,而内存标准与处理器一样变化比较频繁,所以不同芯片组中北桥芯片是肯定不同的,当然这并不是说所采用的内存技术就完全不一样,而是不同的芯片组北桥芯片间肯定在一些地方有差别。

(2)南桥芯片(SouthBridge)是主板芯片组的重要组成部分,一般位于主板上离CPU插槽较远的下方,PCI插槽的附近,这种布局是考虑到它所连接的I/O总线较多,离处理器远一点有利于布线。

相对于北桥芯片来说,其数据处理量并不算大,所以南桥芯片一般都没有覆盖散热片。

南桥芯片不与处理器直接相连,而是通过一定的方式(不同厂商各种芯片组有所不同,例如英特尔的英特尔HubArchitecture以及SIS的Multi-Threaded“妙渠”)与北桥芯片相连。

南桥芯片负责I/O总线之间的通信,如PCI总线、USB、LAN、ATA、SATA、音频控制器、键盘控制器、实时时钟控制器、高级电源管理等,这些技术一般相对来说比较稳定,所以不同芯片组中可能南桥芯片是一样的,不同的只是北桥芯片。

所以现在主板芯片组中北桥芯片的数量要远远多于南桥芯片。

南桥芯片的发展方向主要是集成更多的功能,例如网卡、RAID、IEEE1394、甚至WI-FI无线网络等等。

4.主板上的扩展插槽:

扩展插槽是主板上用于固定扩展卡并将其连接到系统总线上的插槽,也叫扩展槽、扩充插槽。

扩展槽是一种添加或增强电脑特性及功能的方法。

例如,不满意主板整合显卡的性能,可以添加独立显卡以增强显示性能;不满意板载声卡的音质,可以添加独立声卡以增强音效;不支持USB2.0或IEEE1394的主板可以通过添加相应的USB2.0扩展卡或IEEE1394扩展卡以获得该功能等。

目前扩展插槽的种类主要有ISA,PCI,AGP,CNR,AMR,ACR和比较少见的WI-FI,VXB,以及笔记本电脑专用的PCMCIA等。

历史上出现过,早已经被淘汰掉的还有MCA插槽,EISA插槽以及VESA插槽等等。

目前的主流扩展插槽是PCIExpress插槽。

(1)AGP插槽(AcceleratedGraphicsPort)是在PCI总线基础上发展起来的,主要针对图形显示方面进行优化,专门用于图形显示卡。

AGP标准也经过了几年的发展,从最初的AGP1.0、AGP2.0,发展到现在的AGP3.0,如果按倍速来区分的话,主要经历了AGP1X、AGP2X、AGP4X、AGPPRO,目前最新片版本就是AGP3.0,即AGP8X。

AGP8X的传输速率可达到2.1GB/s,是AGP4X传输速度的两倍。

AGP插槽通常都是棕色(以上三种接口用不同颜色区分的目的就是为了便于用户识别),还有一点需要注意的是它不与PCI、ISA插槽处于同一水平位置,而是内进一些,这使得PCI、ISA卡不可能插得进去

(2)PCI-Express是最新的总线和接口标准,它原来的名称为“3GIO”,是由英特尔提出的,很明显英特尔的意思是它代表着下一代I/O接口标准。

交由PCI-SIG(PCI特殊兴趣组织)认证发布后才改名为“PCI-Express”。

这个新标准将全面取代现行的PCI和AGP,最终实现总线标准的统一。

它的主要优势就是数据传输速率高,目前最高可达到10GB/s以上,而且还有相当大的发展潜力。

PCIExpress也有多种规格,从PCIExpress1X到PCIExpress16X,能满足现在和将来一定时间内出现的低速设备和高速设备的需求。

PCI-E和AGP的区别:

第一,PCI-Ex16总线通道比AGP更宽、“最高速度限制”更高;

第二,PCI-E通道是“双车道”,也就是“双工传输”,同一时间段允许“进”和“出”的两路数字信号同时通过,而AGP只是单车道,即一个时间允许一个方向的数据流。

而这些改进得到的结果是,PCI-Ex16传输带宽能达到2×4Gb/s=8Gb/s,而AGP8x规范最高只有2Gb/s,PCI-E的优势可见一斑。

(3)PCI插槽是基于PCI局部总线(PedpherdComponentInterconnect,周边元件扩展接口)的扩展插槽,其颜色一般为乳白色,位于主板上AGP插槽的下方,ISA插槽的上方。

其位宽为32位或64位,工作频率为33MHz,最大数据传输率为133MB/sec(32位)和266MB/sec(64位)。

可插接显卡、声卡、网卡、内置Modem、内置ADSLModem、USB2.0卡、IEEE1394卡、IDE接口卡、RAID卡、电视卡、视频采集卡以及其它种类繁多的扩展卡。

PCI插槽是主板的主要扩展插槽,通过插接不同的扩展卡可以获得目前电脑能实现的几乎所有外接功能。

(4)PCI-X是PCI总线的一种扩展架构,它与PCI总线不同的是,PCI总线必须频繁的于目标设备和总线之间交换数据,而PCI-X则允许目标设备仅于单个PCI-X设备看已进行交换,同时,如果PCI-X设备没有任何数据传送,总线会自动将PCI-X设备移除,以减少PCI设备间的等待周期。

所以,在相同的频率下,PCI-X将能提供比PCI高14-35%的性能。

PCI-X又一有利因素就是它有可扩展的频率,也就是说,PCI-X的频率将不再像PCI那样固定的,而是可随设备的变化而变化,比如某一设备工作于66MHz,那么它就将工作于66MHz,而如果设备支持100MHz的话,PCI-X就将于100MHz下工作。

PCI-X可以支持66,100,133MHz这些频率,而在未来,可能将提供更多的频率支持。

5.内存控制器

内存控制器(MemoryController)是计算机系统内部控制内存并且通过内存控制器使内存与CPU之间交换数据的重要组成部分。

内存控制器决定了计算机系统所能使用的最大内存容量、内存BANK数、内存类型和速度、内存颗粒数据深度和数据宽度等等重要参数,也就是说决定了计算机系统的内存性能,从而也对计算机系统的整体性能产生较大影响。

传统的计算机系统其内存控制器位于主板芯片组的北桥芯片内部,CPU要和内存进行数据交换,需要经过“CPU--北桥--内存--北桥--CPU”五个步骤,在此模式下数据经由多级传输,数据延迟显然比较大从而影响计算机系统的整体性能;而AMD的K8系列CPU(包括Socket754/939/940等接口的各种处理器)内部则整合了内存控制器,CPU与内存之间的数据交换过程就简化为“CPU--内存--CPU”三个步骤,省略了两个步骤,与传统的内存控制器方案相比显然具有更低的数据延迟,这有助于提高计算机系统的整体性能。

CPU内部整合内存控制器的优点,就是可以有效控制内存控制器工作在与CPU核心同样的频率上,而且由于内存与CPU之间的数据交换无需经过北桥,可以有效降低传输延迟。

打个比方,这就如同将货物仓库直接搬到了加工车间旁边,大大减少了原材料和制成品在货物仓库和加工车间之间往返运输所需要的时间,极大地提高了生产效率。

这样一来系统的整体性能也得到了提升。

CPU内部整合内存控制器的最大缺点,就是对内存的适应性比较差,灵活性比较差,只能使用特定类型的内存,而且对内存的容量和速度也有限制,要支持新类型的内存就必须更新CPU内部整合的内存控制器,也就是说必须更换新的CPU;而传统方案的内存控制器由于位于主板芯片组的北桥芯片内部,就没有这方面的问题,只需要更换主板,甚至不更换主板也能使用不同类型的内存,例如IntelPentium4系列CPU,如果原来配的是不支持DDR2的主板,那么只要更换一块支持DDR2的主板就能使用DDR2,如果配的是同时支持DDR和DDR2的主板,则不必更换主板就能直接使用DDR2。

6.内存控制器的分频效应(感谢网友大头彬提供资料)

系统工作时,内存运行频率是根据CPU运行频率的变化而变化的。

控制这种变化的元件就是内存控制器,内存控制器的这种根据CPU的实际频率来调节内存运行频率的方式称作内存控制器的分频效应。

具体的分频方式因不同平台而异。

(1)AMD平台

目前主流的AMDCPU都在内部集成了内存控制器,所以无论搭配什么主板,其内存分频机制都是一定的。

每一个确定了硬件配置的AMD平台都有其固定的内存分频系数,这些系数影响着内存的实际运行频率。

AMD平台内存分频系数的具体计算方法如下:

分频系数N=CPU默认主频×2÷内存标称频率

得到的数字再用“进一法”取整数。

注意,“进一法”不是四舍五入,而是把小数点后的数字舍掉,在前面的整数部分加1。

这时,内存实际运行频率=CPU实际运行主频÷分频系数N。

例如,AM2接口的Athlon643000+搭配DDR2667内存时,我们在BIOS里把内存频率设置为DDR2667,而此时内存实际工作在DDR2600下,这就是由内存分频系数引起的。

由于此时BIOS的设置值并非内存的实际工作频率,因此我们把BIOS中的设置值称为内存标称频率。

以上面所说的AM2Athlon643000+搭配DDR2667内存为例:

N=1800×2÷667≈5.397,取整数=6,

此时内存的实际运行频率=1800MHz÷6=300MHz,即DDR2600。

如果在BIOS中把内存设置为DDR2533,则用上述公式计算得出其分频系数N=7,内存实际工作在DDR2517下。

不同频率的内存搭配不同主频的CPU时,其内存分频系数又各不相同。

如果CPU换成3200+,默认频率为2GHz,

则在DDR2667时:

N=2000×2÷667,取整数为6,

DDR2533时,N=2000×2÷533,取整数为8,

平台的硬件配置不同,则系数N不同。

对AMD平台而言,直接关系到超频幅度的三个决定性因素分别为:

CPU、内存、HT总线,其中任何一项拖了后腿,整个平台的超频幅度都大受影响。

我们可以人为地降低CPU倍频和HT总线倍频,以减少CPU和HT总线对超频结果的影响,这时进行超频就可以确定内存的超频极限。

(2)Intel平台

Intel平台的内存控制器一般集成在主板芯片上,其分频机制也由不同的主板芯片来决定。

Intel平台的内存分频系数=CPU外频:

内存运行频率。

以目前主流的Intel965/975芯片组为例,其分频机制非常明了,在BIOS中直接提供几个固定的分频系数。

例如1∶1、1∶1.33、1∶1.66等等,

E6300的默认外频为266MHz,如果分频系数设置为1∶1.33,

则内存实际运行频率=266MHz×1.33=353.78MHz,即DDR2707。

Intel平台上直接关系到超频幅度的三个决定性因素分别为:

CPU、内存、FSB总线,其中FSB总线值固定为CPU外频的四倍。

Intel965/975芯片组的分频系数都小于1,分频系数越小,内存运行频率相对于CPU外频的倍数就越大,我们选择越小的分频系数,就可以降低CPU体质对平台整体超频结果的影响,从而测试出内存的极限超频频率。

在NVIDIA的nForce680i芯片组上还提供大于1的分频系数,可以让内存低于CPU外频频率运行。

7.图解ATX主板上各个部件的名称和位置

(以华硕P5B-EPLUS主板为例)

(1)主板供电设计:

主板供电设计

(2)CPU插槽:

(下图中红色框部分)

CPU插槽(Socket775)

(3)南北桥芯片:

主板北桥和南桥芯片(上面覆盖散热片)

(4)内存插槽:

(下图中红色框部分)

DDR2DIMM内存插槽

(5)硬盘接口:

(下图中红色框部分)

硬盘接口

包括6个SATA3.0Gb/s接口、1个UltraDMA133/100/66接口、1个InternalSATA3.0Gb/s接口和1个ExternalSATA3.0Gb/s接口。

(6)为硬盘接口提供支持的JMB363芯片:

(下图)

(7)板载声卡芯片:

(下图)

8)支持IEEE1394的板载TSB43AB22A芯片:

(下图)

板载TSB43AB22A芯片来实现对IEEE1394的支持。

(9)扩展插槽:

主板上的扩展插槽

上图中绿色框框部分分别为显卡插槽PCI-EX16(比较长的那根蓝色插槽)和PCI-EX4(比较短的那根黑色插槽)。

上图中红色框框部分是普通PCI扩展插槽。

(10)输入输出设备接口:

输入输出设备接口

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1