试析路基挖方的施工技术大口径厚壁管道的全自动焊接.docx

上传人:b****7 文档编号:9648709 上传时间:2023-02-05 格式:DOCX 页数:14 大小:158.58KB
下载 相关 举报
试析路基挖方的施工技术大口径厚壁管道的全自动焊接.docx_第1页
第1页 / 共14页
试析路基挖方的施工技术大口径厚壁管道的全自动焊接.docx_第2页
第2页 / 共14页
试析路基挖方的施工技术大口径厚壁管道的全自动焊接.docx_第3页
第3页 / 共14页
试析路基挖方的施工技术大口径厚壁管道的全自动焊接.docx_第4页
第4页 / 共14页
试析路基挖方的施工技术大口径厚壁管道的全自动焊接.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

试析路基挖方的施工技术大口径厚壁管道的全自动焊接.docx

《试析路基挖方的施工技术大口径厚壁管道的全自动焊接.docx》由会员分享,可在线阅读,更多相关《试析路基挖方的施工技术大口径厚壁管道的全自动焊接.docx(14页珍藏版)》请在冰豆网上搜索。

试析路基挖方的施工技术大口径厚壁管道的全自动焊接.docx

试析路基挖方的施工技术大口径厚壁管道的全自动焊接

试析路基挖方的施工技术、大口径、厚壁管道的全自动焊接

  摘要:

路基工程施工中挖方路段是工作难点,基于挖方段的特点,对挖方路段施工的准备工作及开挖方法作以详细阐述,并就保证工程质量和进度的应注意的几点事项加以分析。

  关键词:

路基挖方;开挖方法;注意事项

  1、路基挖方施工特点

  路基挖方又称为路堑是路基工程施工中的一个重点。

尤其在山岭重丘地区修建高等级公路,挖方路基常常是控制工程进度的关键。

公路建成通车后,挖方段又是养路部门养护的重点。

由于挖方路堑是由天然地层构成的,天然地层在生成和演变的长期过程中,一般具有复杂的地质结构。

处于地壳表层的挖方路堑边坡施工中受到自然和人为因素包括水文、水文地质、地面水、气候、地貌、设计与施工方案等的影响,比路堤边坡更容易发生变形破坏。

  路基出现的病害大多发生在路堑挖方地段上,诸如滑坡、崩坍、落石、路基翻浆等。

路基大断面的开挖施工,破坏了原有的山体平衡,以及地下、地表水体的平衡,如果施工方案选择不合理,边坡太陡,弃方堆弃太近,草坡栽种、护面铺砌及挡土墙施工不及时,排水不良等都会引起路堑边坡失稳、滑坡,严重时甚至影响整个工程进度,这是挖方路基施工中经常出现的问题。

施工人员应从设计审查、施工方案选择、现场地质水文调查多方面把关,切实搞好挖方路基施工。

  2、路基挖方施工前准备工作

  2.1测量放样

  施工恢复定线测量及施工放样是施工准备阶段的主要技术工作,承包单位根据设计图纸、监理工程师书面提供的各导线点坐标及水准点标高进行复测,闭合后将复测资料交监理工程师审核。

承包人应根据监理工程师批准的定线数据进行施工放线。

按规范中规定,路基施工前,应根据设计图、施工工艺和有关规定恢复的路线中线桩、钉出路基用地界桩、路堑坡顶、边沟、取土坑、护坡道、弃土堆等的具体位置桩。

道路中线桩直线部分每20m一个,每100m设一个永久性固定桩,曲线的起点、终点、圆缓点、缓圆点都应设置固定桩。

在中线桩施测后,进行横断面测量,然后根据路基横断面图及实测标高进行边桩放线。

在挖方断面的坡顶点位置上,钉挖断面的边桩,一般在距边桩一定距离的外方,设栓(护)桩,以备边桩丢失后及时恢复。

  2.2施工前的复查和试验

  路基施工前,施工人员应对路基工程范围的地质水文情况进行详细调查,通过取样试验确定其性质和范围,并了解附近既有建筑物对特殊土的处理方法。

对有岩石的地段要掌握岩层风化、龟裂程度,岩层的层理、节理、片理状态,对于易崩塌地带的断层和地质变化区段的情况尤应给予特别的重视。

  土工试验取样一般按设计文件提供的资料每一种土类取样不少于三组;也有按桩号取样进行土工常规或试验的。

并按照《公路路基施工技术规范》(JTJ033-95)规定,挖方、借土场用做填料的土应该进行的试验项目,其试验方法按《公路土工试验规程》(JTJ051-93)办理。

  2.3开挖前路堑的排水设施

  由于水是造成路堑各种病害的主要原因,所以不论采取何种开挖方法,均应保证开挖过程中及竣工后的有效排水。

  

(1)在路堑开挖前做好截水沟,分层开挖时应修建临时排水沟。

  

(2)临时排水设施与永久性排水设施相结合,流水不得排于农田、耕地,污染自然水源,也不得引起淤积和冲刷。

  (3)路堑施工时应注意经常维修排水沟道,保证流水畅通。

渗水性土质或急流冲刷地段的排水沟应予以加固,防渗防冲。

水文地质不良地段,必须严格搞好堑顶排水。

  (4)引走一切可能影响边坡稳定的地面水和地下水,在路堑的线路方向上保持一定的纵向坡度(单向或双向)以利排水。

  3、路堑的开挖

  土方地段的挖方路基施上标高,考虑因压实而产生的下沉量,下沉量的数值由试验室确定。

路基顶面以下80cm的压实度,要达到95%,严格按JTJ051-93《公路土工试验规程》重型击实法进行检验。

不符合要求时,采取压实或其它措施进行处理,并报监理上程师批准。

  3.1开挖原则

  

(1)按设计坡比分层开挖,每层开挖深度应根据机械修整边坡的便利程度确定。

  

(2)软土天然层开挖应考虑弃土外运问题,保证开挖现场的便道畅通,合理组织现场交通,并结合本单位的运输设备吨位考虑。

  (3)石方爆破作业以小型及松动爆破为主,严禁过量爆破。

对坡面2m范围内采用光面爆破和预裂爆破技术。

  (4)路堑开挖应采用“横向分层、纵向分段、两端同步、阶梯掘进”的方式有序进行。

  (5)注重开挖现场文明施工,保证施工有序,安全生产,文明施工。

  3.2路堑的开挖方法

  土方路堑开挖根据路堑深度和纵向长度,开挖方式可以分为横挖法、纵挖法及混合式开挖法三种。

  

(1)横挖法

  对路堑整个横断面的宽度和深度从一端或两端逐渐向前开挖的方式称为横挖法或一层横向全宽挖掘法,适用于开挖深度小且较短的路堑。

多层横向全宽挖掘法适用于开挖深而短的路堑,土方工程数量较大时,各层应纵向拉开,做到多层、多方向出土,可安排较多的劳动力和施工机械,以加快施工进度。

每层挖掘深度根据工作方便和施工安全而定,人力横挖法施工时,一般1.5-2.0m;机械横挖法施工时,每层台阶深度可加大到3m-4m。

横挖法适用于机械化施工,以推土机堆土配合装载机和自卸车运土较为有利,边坡修整和施工排水沟由人力与平地机修刮完成。

  

(2)纵挖法

  分层纵挖法:

沿路堑全宽以深度不大的纵向分层挖掘前进的作业方式称为分层纵挖法,本法适用于较长的路堑开挖。

施工中当路堑的长度较短(不超过100m),开挖深度不大于3m,地面较陡时,宜采用推土机作业,其适当运距为20-70m,最远不宜大于100m,当地面横坡较平缓时,表面宜横向铲土,下层的土宜纵向推运:

当路堑横向宽度较大时,宜采用两台或多台推土机横向联合作业;当路堑前傍陡峻山坡时,宜采用斜铲堆土。

通道纵挖法:

沿路堑纵向挖掘一通道,然后将通道向两侧拓宽,上层通道拓宽至路堑边坡后,再开挖下层通道,按此方向直至开挖到挖方路基顶面标高,这是一种快速施工的有效方法,通道可作为机械通行、运输土方车辆的道路,便于土方挖掘和外运的流水作业。

分段纵挖法:

沿路堑纵向选择一个或几个适宜处,将较薄一侧路堑横向挖穿,将路堑在纵方向上按桩号分成两段或数段,各段再纵向开挖。

本办法适用于路堑过长,弃土运距过远的傍山路堑,或一侧的堑壁不厚的路堑开挖,同时还应满足其中间段有经批准的弃土场、土方调配计划有多余的挖方废弃的条件。

  (3)混合式开挖法

  即将横挖法与通道纵挖法混合使用,适用于路堑纵向长度和挖深都很大时,先将路堑纵向挖通后,然后沿横向坡面挖掘,以增加开挖坡面。

每一个坡面应设一个机械施工班组进行作业。

  3.3开挖过程注意事项

  

(1)做好堑顶截排水,并随时注意检查。

临时排水设施与永久性排水设施相结合。

  

(2)开挖过程中,派专人仔细调查开挖坡面稳定情况,发现问题及时加固处理,同时做好地下设备的调查和勘察工作。

  (3)加强测量控制,边坡随开挖随成型,保持边坡平顺。

  (4)雨季开挖土路堑时,分层进行开挖,每层底面设大于1%的纵坡,挖方边坡沿边坡预留30cm厚,待雨后再整修到设计边坡线,开挖路堑在距基顶面30cm时停止开挖,待雨季后再挖到设计标高。

  (5)冬季施工时,开工未挖完的土质路堑、基坑时,将开挖面表层翻松30-40cm,耙平作为保温层防冻;已开挖完的,表层预覆松土或草袋上覆松土,待继续施工时再清除。

土方开挖完毕,立即施工上部结构,防止基底冻结;如有工艺间歇,按冬季防护办法处理。

  (6)土方开挖时,对地下管线、缆线、文物古迹和其他构造物做好妥善保护。

在居民区附近开挖土方时,采取有效措施保证居民及施工人员的安全,并为附近居民的生活提供有效的临时便道或便桥。

  (7)土方地段的路床顶面标高,考虑因压实而产生的下沉量,其值由实验确定。

路床顶面以下30cm的压实度不小于95%.

  (8)对有石方爆破的路基挖方施工,应设立警戒线,安全标牌齐全,并设专业人员监督管理,以保证生产和生活安全。

  参考文献:

  [1]邓学均。

路基路面工程[M]。

北京,人民交通出版社,1999

  [2]陈金龙,王艳。

山岭重丘区高等级公路改建工程路基施工[J]。

筑路机械与施工机械化,2005,10

  [3]苏志雄。

重视路基挖方边坡的设计[J]。

华东公路,2001,1

  全自动焊接大口径、厚壁(大于21mm)管线经常采用U型坡口或复合型坡口,由于U型坡口、复合坡口加工耗时、耗力制约管道焊接效率。

V形坡口加工简单,省时、省力,但大口径、厚壁管线V型坡口全自动焊接时,如焊接工艺参数选择不当,将导致焊接缺陷产生。

  随着管道建设用钢管强度等级提高至X70、X80级别,管径和壁厚的增大,从2003年起在管道施工中逐渐开始应用自动焊技术。

管道自动焊技术由于焊接效率高,劳动强度小,焊接过程受人为因素影响小等优势,在大口径、厚壁管道建设的应用中具有很大潜力。

  但我国的管道自动焊接技术正处于发展阶段,焊接中的一些问题如根部未熔合、侧壁未融合、坡口复杂等还没有彻底解决;自动焊接大口径、厚壁管线经常采用U型坡口或复合型坡口,管端坡口整形机等配套设施尚未成熟,所以研究大口径、厚壁管道V型坡口自动焊接技术十分有意义。

  西气东输二线中卫-靖边联络线全线长度约345km,钢管强度等级为X70,管径为φ1016,壁厚为14.6mm、17.5mm、21.0mm和26.2mm,根据该工程特点长庆建设工程总公司引进了CRC全自动焊机,应用在联络线第1B标段壁厚为21.0mm管道上。

  焊接方法、设备、材料

  焊接方法采用STT根焊+CRC-P260自动焊机热焊、填充、盖面。

焊接设备:

林肯STT焊机、林肯DC-400、CRC-P260自动焊机。

保护气体:

STT根焊保护气100%CO2,全自动焊保护气为80%Ar+20%CO2。

焊接材料如表1所示。

  图1坡口形式

  接头形式及焊道顺序

  焊道坡口形式如图1所示,焊道顺序如图2所示。

  焊接试验与分析

  自动焊常用复合坡口或U型坡口,在小壁厚管线中也可使用V型坡口,它们共同的特点就是坡口上口间隙较小。

西气东输二线管道壁厚为21.0mm,V型坡口的上口宽度约为22mm,此宽度已接近CRC-P260焊枪摆幅极限。

这样的坡口型式对自动焊接是一个巨大的挑战。

根据以往经验确定了自动焊试验焊接工艺参数(如表2所示)。

  采用以上参数进行自动焊接试验,试验焊接中发现自动焊缝易出现缺陷有层间未熔合、侧壁未熔合、密集气孔、仰焊部位余高超标等。

  在试焊过程中,电流在210~235A、电压在21~23V、送丝速度在420~480in/min、焊接速度在12~15in/min时,试验焊接中发现F1、F2、F3焊缝上几乎未出现层间未熔合情况、坡口未熔合及密集气孔情况。

分析认为F1、F2、F3、三道焊缝坡口宽度小,气体保护充分,因而不会产生氮气孔;坡口宽度小使得焊枪摆幅小,摆动频率高,在送丝速度一定情况下母材与填充金属熔合充分,因而产生未熔合的几率较小;仰焊部位焊缝余高不大。

  电流在200~250A、电压在18~22V、送丝速度在400~500in/min、焊接速度在12~16in/min时,试验焊中发现F4、F5、F6部分焊缝立焊位置出现层间未熔合和坡口未熔合,但依然没有气孔出现,仰焊部分余高不大。

产生层间未熔合和坡口未熔合的焊缝焊接电流小于220A,电压21V,送丝速度小于450in/min,焊接速度大于15in/min,且焊枪摆动频率小于90次/min.提高送丝速度、电流电压(调整焊丝伸出长度)、增大焊枪摆动幅度同时尽量选择较快的焊枪摆动频率、控制立焊部位焊接速度后,F4、F5、F6检测后未发现层间未熔合和坡口未熔合。

  电流在220~250A、电压在20~22V、送丝速度在450~500in/min、焊接速度在14~16in/min时,盖面焊缝未发现未熔合,但盖面焊缝在仰焊位置余高超标。

分析认为盖面焊缝宽度约为18~22mm,这个宽度接近CRC-P260焊枪最大摆动幅度,而宽焊缝、焊枪大摆幅、快摆频使熔池存在时间长且焊枪运动时对熔池有搅拌作用,仰焊位置熔敷金属在重力、电磁力等作用下垂,进而导致仰焊位置焊缝余高超标。

  为了保证良好的盖面成型效果,盖面焊在选择较小的焊接速度的同时尽量减小焊枪摆动频率,使的盖面焊缝薄而宽,从而减小了熔池存在时间,达到了减少仰焊位置余高的目的。

  采用以上参数进行自动焊接试验,试验焊接中发现自动焊缝易出现缺陷有层间未熔合、侧壁未熔合、密集气孔、仰焊部位余高超标等。

  在试焊过程中,电流在210~235A、电压在21~23V、送丝速度在420~480in/min、焊接速度在12~15in/min时,试验焊接中发现F1、F2、F3焊缝上几乎未出现层间未熔合情况、坡口未熔合及密集气孔情况。

分析认为F1、F2、F3、三道焊缝坡口宽度小,气体保护充分,因而不会产生氮气孔;坡口宽度小使得焊枪摆幅小,摆动频率高,在送丝速度一定情况下母材与填充金属熔合充分,因而产生未熔合的几率较小;仰焊部位焊缝余高不大。

  电流在200~250A、电压在18~22V、送丝速度在400~500in/min、焊接速度在12~16in/min时,试验焊中发现F4、F5、F6部分焊缝立焊位置出现层间未熔合和坡口未熔合,但依然没有气孔出现,仰焊部分余高不大。

产生层间未熔合和坡口未熔合的焊缝焊接电流小于220A,电压21V,送丝速度小于450in/min,焊接速度大于15in/min,且焊枪摆动频率小于90次/min.提高送丝速度、电流电压(调整焊丝伸出长度)、增大焊枪摆动幅度同时尽量选择较快的焊枪摆动频率、控制立焊部位焊接速度后,F4、F5、F6检测后未发现层间未熔合和坡口未熔合。

  电流在220~250A、电压在20~22V、送丝速度在450~500in/min、焊接速度在14~16in/min时,盖面焊缝未发现未熔合,但盖面焊缝在仰焊位置余高超标。

分析认为盖面焊缝宽度约为18~22mm,这个宽度接近CRC-P260焊枪最大摆动幅度,而宽焊缝、焊枪大摆幅、快摆频使熔池存在时间长且焊枪运动时对熔池有搅拌作用,仰焊位置熔敷金属在重力、电磁力等作用下垂,进而导致仰焊位置焊缝余高超标。

  为了保证良好的盖面成型效果,盖面焊在选择较小的焊接速度的同时尽量减小焊枪摆动频率,使的盖面焊缝薄而宽,从而减小了熔池存在时间,达到了减少仰焊位置余高的目的。

  

  焊接工艺参数

  根据试焊结果及分析最后确定西气东输二线联络线STT根焊+CRC全自动焊填充、盖面工艺参数(如表3所示)。

依据表3焊接参数焊接,焊缝经检测无气孔、裂纹、未熔合等缺陷,焊缝表面成型情况(如图3所示),宏观金相良好(如图4所示)。

图4焊缝宏观金相

  焊缝机械性能经过中国石油天然气管道科学研究院焊接技术中心检测,各项指标符合西气东输二线联络线接施工要求。

STT根焊+CRC-P260自动焊接在大口径、厚壁(V型坡口)管道上的成功应用,充分体现了自动焊接技术优质、高效、低劳动强度的特点。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 纺织轻工业

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1