LSDYNA第七章材料模型.docx

上传人:b****7 文档编号:9624022 上传时间:2023-02-05 格式:DOCX 页数:48 大小:255.49KB
下载 相关 举报
LSDYNA第七章材料模型.docx_第1页
第1页 / 共48页
LSDYNA第七章材料模型.docx_第2页
第2页 / 共48页
LSDYNA第七章材料模型.docx_第3页
第3页 / 共48页
LSDYNA第七章材料模型.docx_第4页
第4页 / 共48页
LSDYNA第七章材料模型.docx_第5页
第5页 / 共48页
点击查看更多>>
下载资源
资源描述

LSDYNA第七章材料模型.docx

《LSDYNA第七章材料模型.docx》由会员分享,可在线阅读,更多相关《LSDYNA第七章材料模型.docx(48页珍藏版)》请在冰豆网上搜索。

LSDYNA第七章材料模型.docx

LSDYNA第七章材料模型

第七章材料模型

ANSYS/LS-DYN包括40多种材料模型,它们可以表示广泛的材料特性,可用

材料如下所示。

本章后面将详细叙述材料模型和使用步骤。

对于每种材料模型的详细信息,请参看AppendixB,MaterialModelExamples或《LS/DYNATheoreticalManual》的第十六章(括号内将列出与每种模型相对应的LS-DYNA

材料号)。

线弹性模型

•各向同性(#1)

•正交各向异性(#2)

•各向异性(#2)

•弹性流体(#1)

非线弹性模型

•Blatz-koRubber倂7)

•MooneyRivlinRubber(#27)

•粘弹性(#6)

非线性无弹性模型

•双线性各向同性(#3)

•与温度有关的双线性各向同性(#4)

•横向各向异性弹塑性(#37)

•横向各向异性FLD(#39)

•随动双线性(#3)

•随动塑性(#3)

•3参数Barlat(#36)

•Barlat各向异性塑性(#33)

•与应变率相关的幂函数塑性(#64)

•应变率相关塑性(#19)

•复合材料破坏(#22)

•混凝土破坏(#72)

•分段线性塑性(#24)

•幂函数塑性(#18)

压力相关塑性模型

•弹-塑性流体动力学(#10)

•地质帽盖材料模型(#25)

泡沫模型

•闭合多孔泡沫(#53)

•粘性泡沫(#62)

•低密度泡沫(#57)

•可压缩泡沫(#63)

•Honeycomb(#26)

需要状态方程的模型

•Bamma塑性(#51)•Johnson-Cook塑性(#15)

•空材料(#9)

•Zerilli-Armstrong(#65)

•Steinberg(#11)

离散单元模型

•线弹性弹簧

•普通非线性弹簧

•非线性弹性弹簧

•弹塑性弹簧

•非弹性拉伸或仅压缩弹簧

•麦克斯韦粘性弹簧

•线粘性阻尼器

•非线粘性阻尼器

•索(缆)(#71)

刚性体模型

•刚体(#20)

7.1定义显示动态材料模型

用户可以采用ANSY命令MP,MPTEMP,MPDATA,TB,TBTEMP和TBDATA以及ANSYS/LS-DYN命令EDMP来定义材料模型。

下一节显动态材料模型的描述,说明了怎样使用命令定义每种材料模型的特性。

通过GUI路径定义材料模型比使用命令直接得多:

1.选择菜单路径MainMenu>Preprocessor>MaterialProps>MaterialModels.DefineMaterialModelBehavior对话框出现。

注--如果不事先定义ANSYS/LS-DYN单元类型,那么就不能定义ANSYS/LS-DYN材料模型。

2.在MaterialModelsAvailable窗口的右侧,双击LS-DYNA然后选择一种材料模型种类:

线性、非线性、状态方程、离散单元特性或刚体材料。

3.双击一种材料的子目录。

例如,在非线性材料中,有弹性、非弹性和泡沫材料模型。

4.继续双击下面的材料分类直到数据输入对话框出现。

框中的选项包括所有的材料模型,它对所选的材料模型都有效。

5.输入所需的值,单击OK。

然后在MaterialsModelsDefined窗口左边

就列出了材料模型的类型和号码。

然后用户可以双击MaterialsModelsDefined窗口左边的材料模型使相关数据对话框出现。

这样就可以修改其值。

然后单击OK。

用户可以选择Edit>Copy并指定新模型号来复制现有材料模型的内容,复制的材料模型以新模型号列在MaterialsModelsDefined窗口左侧,其内容与原材料模型内容相同。

单击模型号选定它,然后选择Edit>Delete,可以删除材料模型。

使用GUI路径定义材料的详细信息,参看§1.244《ANSYSBasicAnalysisGuide》中的MaterialModelSurface,也可参看《ANSYSOperationsGuide》

的§4.2.1.10UsingTreeStructure来获得材料模型界面结构层的详细信息。

如果用户通过GUI路径来定义、修改、复制或删除材料模型,ANSY将自动发出正确命令并将其写入log文件中。

7.2显式动态材料模型的描述

本节将详细讲述每一种材料模型。

每当提及“加载曲线ID”时,就需要输入一条材料数据曲线ID,用EDCURVE命令定义材料数据曲线,见第四章,Loading。

当采用交互工作方式时,所有材料模型的可用特性都出现在材料模型对话框中。

当使用批处理或命令流方式时,相应的命令都提供在这里。

要保证定义材料属性为模型列出的,不要定义与模型无关的数据。

7.2.1线弹性模型

7.2.1.1各向同性弹性模型

各向同性弹性模型。

使用MP命令输入所需参数:

MP,DEN—密度

MP,E)—弹性模量

MP,NUX—泊松比

此部分例题参看B.2.1,IsotropicElasticExample:

HighCarbon

Steel。

7.2.1.2正交各向异性弹性模型

正交各向异性弹性模型。

用MP命令输入所需参数:

MP,DEN—密度

MP,E)—弹性模量(EYEZ;需一值

MP,NUX—从泊松比(NUXYNUXZ;需一值或

MP,PRX—主泊松比(PRYZPRXZ;需一值

MP,GXY-剪切模量(GYZ,GXZ;需一值

当仅给定一个值时(例如,EX)其它值将自动定义(EY=EZ=E)。

用EDLCS和EDMP,ORTH命令定义材料坐标系统。

如果没有给定材料坐标系统,材料特性将单元的I,J,L节点定义的材料轴保持正交各向异性(参看下图)。

对于多层复合壳,用TB,COM命令代替,并作为SHELL163单元实常数给定层性质。

详细信息参看§723.11CompositeDamageModel.

例题参看B.2.2OrthopicElasticExample:

AluminumOxide.

7.2.1.3各向异性弹性模型

此种材料的描述需要全弹性矩阵。

由于其对称性,仅需21种常数。

这种材

料仅对SOLID164单元和PLANE162I元有效(轴对称和平面应变问题)。

用MP命令输入密度。

用TB,ANEL命令以上三角形式输入常数。

用EDLCS和EDMP,ORTH命令定义材料方向轴。

如果没有定义材料坐标系,材料性质将与单元的I、J、L节点所定义的材料轴保持正交各向异性(参看上面的单元坐标

系图)。

MP,DEN—密度

TB,ANEL

TBDATA,1,C11,C12,C22,C13,C23,C33

TBDATA,7,C14,C24,C34,C44,C15,C25

TBDATA,13,C35,C45C55,C16,C26,C36

TBDATA,19,C46,C56C66

当用户使用TBLIST显示材料类型的数据信息时,这些常数以下三角形式[D]出现而不是上三角形式[C]。

这一矛盾不是计算错误;材料数据已准确传递给LS-DYNA程序。

例题参看B.2.3,AnisotropicElasticExample:

Cadmium。

721.4弹性流体模型

使用此选项来模拟动态冲击载荷作用下盛满流体的容器。

可以用MP命令输

入密度(DENS,用EDMP命令定义材料模型为弹性流体:

MP,DENS

EDMP,FLUID,MATVAL1

流体模型要求指定体积模量,可以在上述命令的VAL1域输入。

除了使用EDMP外,用户也可用MP命令输入弹性模量(EX)和泊松比(NUXY。

然后程序将计算体积模量如下所示:

MP,EX

MP,NUXY

K=—-—

3(1-2V)

如果VAL1(EDMP内)、EX和NUXY都指定了,VAL1将用作体积模量。

7.2.2非线性弹性模型

7.2.2.1Blatz-ko弹性橡胶模型

Blatz和ko定义的超弹连续橡胶模型。

该模型使用第二类

Piola-Kirchoff应力:

1f—1

其中,G—剪切模量,V—相对体积,v—泊松比,、一右柯西-格林应变张

量,而一Kroneckerdelta。

用MP命令输入密度(DEN$和剪切模量(GXY。

例题参看B.2.4,Blatz-KoExample:

Rubber。

7.2.2.2Mooney-Rivlin橡胶弹性模型

不可压缩橡胶模型。

它与ANSYS勺Mooney-Rivlin2-参数模型很相似。

输入

和•来定义应变能量密度函数:

D=

2(1-2v)

1,1和厂是右柯西-格林张量不变量。

用MP命令输入泊松比

(1)和密度。

(泊松比的值要比推荐的大一些,太小的值不能工作。

)用TB和TBDATA命令输入Mooney-Rivlin常数,只允许-种温度下的数据,并且必须放在数据表中的1和2位置。

TB,MOONEY,,,0

TBDATA,1,--

TBDATA,2,1

如果不直接输入I和二可以设这些常数为0,然后用载荷曲线提供表格式单轴数据。

程序将根据TBDATA命令的3-6项所输入的实验数据来计算这些常数。

使用这种输入法,必须设TB命令的TBOPT=2

TB,MOONEY,,,2

TBDATA,1,=(设为0,应用实验数据)

TBDATA,2,」(设为0,应用实验数据)

TBDATA,3,-(试样测量长度')

TBDATA,4,f(试样测量宽度)

TBDATA,5,「(试样厚度)

TBDATA,6,=(载荷曲线ID)

提供单轴数据的载荷曲线应使测量长度丄丄随相应力的变化而变化。

在压缩

中,力和长度变化须为负值。

在拉伸中,力和测量长度变化须为正值。

单轴方向的主拉伸比--由下式给出:

%

;—初始长度,L—实际长度。

或者可以通过设定测量长度、设置厚度和宽度为1.0,并且在测量长度变化

处定义工程应变以及在有作用力的地方定义名义(工程)应力,从而输入应力应变曲线。

在ANSYS/LS-DYN求解的初始阶段,用最小二乘法来处理输入的实验数据。

7.223粘弹性模型

Herrmann和Peterson提出的线性粘弹性模型。

模型采用偏量特性:

这里剪切松弛模量由下式给出:

在模型中,由体积V计算增量积分压力时,需事先进行弹性体积假设,即V:

p=K。

用参数」■-、“、K(体积模量)和B来定义线粘弹性模型。

用TB,

EVISC和TBDATA命令的46、47、48和61项输入以上数据:

TB,EVISC

TBDATA,46,'

TBDATA,47,

TBDATA,48,K

TBDATA,61,1/B

注--对于这种材料选项,必须用MP命令定义密度(DENS。

例题参看B.2.6,ViscoelasticExample:

Glass。

7.2.3非线性无弹性模型

7.2.3.1双线性各向同性模型

使用两种斜率(弹性和塑性)来表示材料应力应变行为的经典双线性各向同

性硬化模型(与应变率无关)。

仅可在一个温度条件下定义应力应变特性。

(也有温度相关的本构模型;参看TemperatureDependentBilinearIsotropic

Model)。

用MP命令输入弹性模量(Exx),泊松比(NUXY和密度(DENS,程序用EX和NUXY值计算体积模量(K)。

用TB和TBDATA命令的1和2项输入屈服强度和切线模量:

TB,BISO

TBDATA,1,6(屈服应力)

TBDATA,2,匚」(切线模量)

例题参看B.2.7,BilinearIsotropicPlasticityExample:

NickelAlloy。

723.2与温度相关的双线性各向同性模型

应变率无关、用两种斜率(弹性和塑性)来表示材料应力应变特性的经典双

线性各向同性硬化模型。

可以在六个不同的温度下定义应力应变行为。

如果仅在

一个温度下定义应力应变行为,就需假定双线性各向同性材料模型(与应变率和温度无关)。

可以通过输入较大的屈服强度值来以该模型、表热-弹性材料。

用MP命令输入密度(DENS(温度无关)。

用MPTEMP和MPDATA输入弹性模量(Exx)、泊松比(NUXY和热胀系数(ALPX)(这些特性和温度有关)。

TB,BISO,,NTEMPTBTEMP以及TBDATA命令的1和2项输入屈服强度和切线模量。

屈服强度和切线模量必须相对于同一温度定义,在MPTEMP令中输入。

MP,DENS

MPTEMP

1,二

temp2

刑Pg

J?

MPDATA

EX,

1「「

?

J?

MPDATA

NUXY

1,

MPDATA

ALPX

1,

ALPX、

?

J?

TB,BISO,,NTEMRNTEM可为2至U6)

TBTEMP,上工丄:

(第一个温度点)

TBDATA,1,:

(屈服应力)

TBDATA,2,亠工(切线模量)

TBTEMP,m亠(第二个温度点)

TBDATA,1,6(屈服应力)

TBDATA,2,l丄(切线模量)

(重复此形式NTEM次)

TBTEMP,二"…f(最后一个温度点)

TBDATA,1,;(屈服应力)

TBDATA,2,上二(切线模量)

注--对于这些材料模型,必须提供足够范围的温度数据,使之能够覆盖分析中的实际温度。

否则,分析将会中止。

723.3横向各向异性硬化模型

仅供壳单元和2-D单元使用的全迭代各向异性塑性模型。

在此模型中,由HILL给出的屈服函数在平面应力情况下简化如下:

这里R为各向异性硬化参数,它为平面内的塑性应变率

率上之比:

R=/z

应力应变仅定义在一个温度下。

用MP命令输入弹性模量(Exx),密度(DENS)和泊松比似2乂丫>3用TB,PLAW,,,7和TBDATA命令的1-4项输入屈服应力,切线模量,各向异性硬化参数以及有效屈服应力相对于有效塑性应变的载荷曲线ID号:

TB,PLAW,,,7

TBDATA,1,:

(屈服应力)

TBDATA,3,R(各向异性硬化参数)

TBDATA,2,上:

工(切线模量)

TBDATA,4,LCID(屈服应力和塑性应变的载荷曲线ID)

例题参看B.2.8,TransverselyAnisotropicElasticPlasticExample:

1010Steel。

7.2.3.4横向各向异性FLD硬化模型

这种材料模型用于模拟各向异性材料的板料成形。

仅考虑横向各向异性材料。

对于此模型,可以用定义的载荷曲线来模拟流动应力和有效塑性应变的关系

(EDCURV日。

另外,也可以定义成形极限图(也可用EDCURVE,如下图所示)。

ANSYS/LS-DYN程序用此图来计算材料所承受的最大应变比。

这一塑性模型仅在壳单元和2-D单元中使用。

这一模型遵循前边所述的横向各向异性弹塑性模型所介绍的塑性理论。

理论基础可参考该模型。

使用横向各向异性FLD模型,需用MP命令输入密度(DENS,弹性模量(Exx)和泊松比(NUXY。

如下所示,可以用TB,PLAW,,,10和TBDATA命令中的1-5项定义其它参数。

TB,PLAW,,,10

TBDATA,1,6(屈服应力)

TBDATA,2,上口(切线模量)

TBDATA,3,R(各向异性硬化参数)

TBDATA,4,LCID1(有效应力和塑性应变的载荷曲线)

TBDATA,5,LCID2(定义FLD的载荷曲线)

例题参看B.2.9,TransverselyAnisotropicFLDExample:

SteinlessSteel。

 

723.5双线性随动模型

(与应变率无关)经典的双线性随动硬化模型,用两个斜率(弹性和塑性)来表示材料的应力应变特性。

用MP命令输入弹性模量(Exx),密度(DENS和泊松比(NUXY。

可以用TB,BKIN和TBDATA命令中的1-2项输入屈服强度和切线模量:

TB,BKIN

TBDATA,1,6(屈服应力)

TBDATA,2,匚」(切线模量)

例题参看B.2.10,BilinearKinematicPlasticityExample:

Titanium

Alloy。

7.236塑性随动模型

各向同性、随动硬化或各向同性和随动硬化的混合模型,与应变率相关,可考虑失效。

通过在0(仅随动硬化)和1(仅各向同性硬化)间调整硬化参数B

来选择各向同性或随动硬化。

应变率用Cowper-SymondS莫型来考虑,用与应变

率有关的因数表示屈服应力,如下所示:

这里7—初始屈服应力,L—应变率,c和P-CowperSymonds为应变率参数。

一有效塑性应变,‘匚一塑性硬化模量,由下式给出:

.E話

应力应变特性只能在一个温度条件下给定。

用MP命令输入弹性模量(Exx),密度(DENS和泊松比(NUXY。

用TB,PLAW,,,,1和TBDATA命令中的1-6项输入屈服应力,切线斜率,硬化参数,应变率参数C和P以及失效应变:

如下所示,可以用TB,PLAW,,,,10和TBDATA命令中的1-5项定义其它参数。

TB,PLAVy,,,1

TBDATA,1,;(屈服应力)

TBDATA,2,亠工(切线模量)

TBDATA,3,B(硬化参数)

TBDATA,4,C(应变率参数)

TBDATA,5,P(应变率参数)

TBDATA,6,厂(失效应变)

例题参看B.2.11,PlasticKinematicExample:

1018Steel。

7.2373-参数Barlat模型

由BarlatLian提出的各向异性塑性模型,用于平面应力条件下的铝质薄板模型。

使用了指数和线性硬化法则。

平面应力下各向异性屈服准则定义为:

2(內尸勺|陷+為「+口|险一

屈服应力,a和c—各向异性材料模型,n—Barlat常数,亠-和亠定义为

 

其中h和p为附加各向异性材料常数。

对于指数硬化选项,材料屈服强度给定如下:

k—屈服系数,与一初始屈服应变,':

一塑性应变,n—硬化系数。

所有各向异性材料常数,除p隐含定义外,都由Barlat和Lian定义的宽厚应变比(R)决定:

^=2-2I弘臥

R1+隔1+耳

对于任意角©的宽厚应变比可由下式计算;

…-――沿©方向的单轴向拉伸应力。

仅在同一个温度下给定应力应变特性。

用MP命令输入弹性模量(Exx),密度(DENS和泊松比(NUXY。

硬化准则

类型HR(线性为1或指数为2),切线模量(HR=1或屈服系数(HR=2,屈服应力(HR=1或硬化系数(HR=2,Barlat指数,m厚度和宽度方向的应变比,仝川,和以及正交各向异性材料轴,用TB,PLAW,,,3和TBDATA

命令的1-8项输入:

nor#

最后一项CSID有两个有效值:

0(缺省)和2,如果CSID=Q局部坐标系由单元节点I,J和L定义(如上图所示);如果CSID=2,材料轴由EDLCS命令给定的局部坐标系决定(对于确定轴向的详细信息,请参看命令的描述)。

在定义材料特性之前,必须用EDLCS定义局部坐标系,然后执行EDMP,0RTH0,VAL1其中VAL1值为EDLCS命令定义的坐标系标号。

7.238Barlat各向异性塑性模型

由Barlat,lege和Berm发展的各向异性塑性模型,用于模拟成形过程的材料特性,各向异性屈服函数①定义如下:

0二悅一隔r+匡-爲r+匡-尽「

这里m为流动指数;「为对称矩阵的主值,

这里a、b、c、f、g和h代表各向异性材料常数,当a=b=c=f=g=h=1,就会模拟各向同性材料行为,而屈服表面就会简化为Tresca表面(m=1和VonMises表面(m=2或4),对于此材料选项,屈服强度由下式给出:

陷=1/3[c(cr„-)--cr„)]

1i皿氐-監Mg-bJ

这里k是强度系数,「是塑性应变,㈢是初始屈服应变,n是硬化系数,仅在同一温度下定义应力、应变特性。

用MP命令输入弹性模量(Exx),密度

(DENS和泊松比(NUXY,强度系数,初始屈服应变,硬化系数,流动指数和

Barlat各向异性常数a-h,用TB,PLAW,,,,6和TBDATA命令的第1—10项输入。

TB,PLAW,,,,6

TBDATA1,k(

强度系数)

TBDATA2,'

u(初始应变)

TBDATA3,n(

硬化系数)

TBDATA4,m(

流动指数(Barlat))

TBDATA5,a

TBDATA6,b

TBDATA7,c

TBDATA8,f

TBDATA9,g

TBDATA10,h

例题参看B.2.13,BarlatAnisotropicPlasticityExample:

2008-T4

Aluminum。

7.239应变率敏感的幕函数式塑性模型

与应变率相关的塑性模型,主要用于超塑性成形分析,该模型遵循Ramburgh

-Osgood本构关系:

这里c—应变;夕―应变率;m-硬化系数;k—材料常数;n—应变率敏感系数。

应力-应变关系只能定义于一个温度下。

用MP命令输入弹性模量(EXX,密度(DENS和泊松比(NUXY。

用TB,PLAW,,,,4和TBDATA命令的第1—4项定义材料常数、硬化系数、应变率敏感系数及初始应变率。

TB,PLAW,,,,4

TBDATA1,k(材料常数)

TBDATA2,m(硬化系数)

TBDATA3,n(应变率灵敏系数)

TBDATA4,环(初始应变率)

例题参看B.2.14,RateSensitivePowerlawPlasticityExample:

A356Aluminum。

7.2310应变率相关的塑性模型

应变率相关各向同性塑性模型主要用于金属和塑性成形分析,在此模型中,载荷曲线用来描述初始屈服强度[与有效应变率之间的函数关系。

屈服应力定义如下:

6=澎+禺叩

式中耳―初始屈服强度,孑―有效应变率,匚_有效塑性应变,

应力-应变特性仅定义于同一温度下。

用MP命令输入弹性模量(EXX、

密度(DENS和泊松比(NUXY。

定义初始屈服应力和有效应变率的载荷曲线号,切线模量,定义弹性模量和有效应变率的载荷曲线号,定义切线模量和有效应变率的载荷曲线ID,定义VonMisess失效应力和有效应变率的载荷曲线号,用TB,PLAW,,,,5和TBDATA命令的第1

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 营销活动策划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1