小学六年级奥数讲义之精讲精练第33讲 行程问题一含答案.docx

上传人:b****8 文档编号:9180397 上传时间:2023-02-03 格式:DOCX 页数:14 大小:47.03KB
下载 相关 举报
小学六年级奥数讲义之精讲精练第33讲 行程问题一含答案.docx_第1页
第1页 / 共14页
小学六年级奥数讲义之精讲精练第33讲 行程问题一含答案.docx_第2页
第2页 / 共14页
小学六年级奥数讲义之精讲精练第33讲 行程问题一含答案.docx_第3页
第3页 / 共14页
小学六年级奥数讲义之精讲精练第33讲 行程问题一含答案.docx_第4页
第4页 / 共14页
小学六年级奥数讲义之精讲精练第33讲 行程问题一含答案.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

小学六年级奥数讲义之精讲精练第33讲 行程问题一含答案.docx

《小学六年级奥数讲义之精讲精练第33讲 行程问题一含答案.docx》由会员分享,可在线阅读,更多相关《小学六年级奥数讲义之精讲精练第33讲 行程问题一含答案.docx(14页珍藏版)》请在冰豆网上搜索。

小学六年级奥数讲义之精讲精练第33讲 行程问题一含答案.docx

小学六年级奥数讲义之精讲精练第33讲行程问题一含答案

第33讲行程问题

(一)

一、知识要点

行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:

(1)相遇问题;

(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:

距离=速度×时间。

它大致分为以下三种情况:

(1)相向而行:

相遇时间=距离÷速度和

(2)相背而行:

相背距离=速度和×时间。

(3)同向而行:

速度慢的在前,快的在后。

追及时间=追及距离÷速度差

在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

二、精讲精练

【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少小时?

解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。

这句话的实质就是:

“乙48分钟行了24千米”。

可以先求乙的速度,然后根据路程求时间。

也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:

乙车速度:

24÷48×60=30(千米/小时)

甲行完全程的时间:

165÷30—

=4.7(小时)

解法二:

48×(165÷24)—48=282(分钟)=4.7(小时)

答:

甲车行完全程用了4.7小时。

练习1:

1、甲、乙两地之间的距离是420千米。

两辆汽车同时从甲地开往乙地。

第一辆每小时行42千米,第二辆汽车每小时行28千米。

第一辆汽车到乙地立即返回。

两辆汽车从开出到相遇共用多少小时?

2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。

两车同时从两地开出,相遇时甲车距B地还有多少千米?

 

3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。

到10点钟时两车相距112.5千米。

继续行进到下午1时,两车相距还是112.5千米。

A、B两地间的距离是多少千米?

 

【例题2】两辆汽车同时从东、西两站相向开出。

第一次在离东站60千米的地方相遇。

之后,两车继续以原来的速度前进。

各自到达对方车站后都立即返回,又在距中点西侧30千米处相遇。

两站相距多少千米?

从两辆汽车同时从东、西两站相对开出到第二次相遇共行了三个全程。

两辆汽车行一个全程时,从东站出发的汽车行了60千米,两车走三个全程时,这辆汽车走了3个60千米。

这时这辆汽车距中点30千米,也就是说这辆汽车再行30千米的话,共行的路程相当于东、西两站路程的1.5倍。

找到这个关系,东、西两这站之间的距离也就可以求出来了。

所以

(60×3+30)÷1.5=140(千米)

答:

东、西两站相距140千米。

 

练习2:

1、两辆汽车同时从南、北两站相对开出,第一次在离南站55千米的地方相遇,之后两车继续以原来的速度前进。

各自到站后都立即返回,又在距中点南侧15千米处相遇。

两站相距多少千米?

 

2、两列火车同时从甲、乙两站相向而行。

第一次相遇在离甲站40千米的地方。

两车仍以原速继续前进。

各自到站后立即返回,又在离乙站20千米的地方相遇。

两站相距多少千米?

 

3、甲、乙两辆汽车同时从A、B两地相对开出。

第一次相遇时离A站有90千米。

然后各按原速继续行驶,分别到达对方车站后立即沿原路返回。

第二次相遇时在离A地的距离占A、B两站间全程的65%。

A、B两站间的路程是多少千米?

 

【例题3】A、B两地相距960米。

甲、乙两人分别从A、B两地同时出发。

若相向而行,6分钟相遇;若同向行走,80分钟甲可以追上乙。

甲从A地走到B地要用多少分钟?

甲、乙两人从同时同向出发到相遇,6分钟共行的路程是960米,那么每分钟共行的路程(速度和)是960÷6=160(米);甲、乙两人从同时同向出发到甲追上乙需用去80分钟,甲追乙的路程是960米,每分钟甲追乙的路程(速度差)是960÷80=12(米)。

根据甲、乙速度和与差,可知甲每分钟行(160+12)÷1=86(米)。

甲从A地到B地要用960÷86=11

(分钟),列算式为

960÷[(960÷6+960÷80)÷2]=11

(分钟)

答:

甲从A地走到B地要用11

分钟。

练习3:

1、一条笔直的马路通过A、B两地,甲、乙两人同时从A、B两地出发,若先跟乡行走,12分钟相遇;若同向行走,8分钟甲就落在乙后面1864米。

已知A、B两地相距1800米。

甲、乙每分钟各行多少米?

 

2、父子二人在一400米长的环行跑道上散步。

他俩同时从同一地点出发。

若想8背而行,2

分钟相遇;若同向而行,26

分钟父亲可以追上儿子。

问:

在跑道上走一圈,父子各需多少分钟?

 

3、两条公路呈十字交叉。

甲从十字路口南1350米处向北直行,乙从十字路口处向东直行。

同时出发10分钟后,二人离使字路口的距离相等;二人仍保持原来速度直行,又过了80分钟,这时二人离十字路口的距离又相等。

求甲、乙二人的速度。

 

【例题4】上午8时8分,小明骑自行车从家里出发。

8分钟后每爸爸骑摩托车去追他。

在离家4千米的地方追上了他,然后爸爸立即回家。

到家后他又立即回头去追小明。

再追上他的时候,离家恰好是8千米(如图33-2所示),这时是几时几分?

由题意可知:

爸爸第一次追上小明后,立即回家,到家后又回头去追小名,再追上小明时走了12千米。

可见小明的速度是爸爸的速度的

那么,小明先走8分钟后,爸爸只花了4分钟即可追上,这段时间爸爸走了4千米。

列式为

爸爸的速度是小明的几倍:

(4+8)÷4=3(倍)

爸爸走4千米所需的时间:

8÷(3—1)=4(分钟)

爸爸的速度:

4÷4=1(千米/分)

爸爸所用的时间:

(4+4+8)÷1=16(分钟)

16+16=32(分钟)

答:

这时是8时32分。

练习4:

1、A、B两地相距21千米,上午8时甲、乙分别从A、B两地出发,相向而行。

甲到达B地后立即返回,乙到达A地后立即返回。

上午10时他们第二次相遇。

此时,甲走的路程比乙走的多9千米,甲一共行了多少千米?

甲每小时走多少千米?

 

2、张师傅上班坐车,回家步行,路上一共要用80分钟。

如果往、返都坐车,全部行程要50千米;如果往、返都步行,全部行程要多长时间?

 

3、当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米。

如果乙和丙按原来的速度继续冲向终点,那么乙到达终点时将比丙领先多少米?

 

【例题5】甲、乙、丙三人,每分钟分别行68米、70.5米、72米。

现甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙和乙相遇后,又过2分钟与甲相遇。

东、西两镇相距多少器秒年米毫?

如图33-3所示,可以看出,乙、丙两人相遇时,乙比甲多行的路程正好是后来甲、丙2分钟所行的路程和,是(68+72)×2=280(米)。

而每分钟乙比甲多行70.5—68=2.5(米)可见,乙、丙相遇时间是280÷2.5=112(分钟),因此,求东、西两镇间的距离可用速度和乘以相遇时间求出。

列式为

乙、丙相遇时间:

(68+72)×2÷2.5=112(分钟)

东、西两镇相距的千米数:

(70.5+72)×112÷1000=15.96(千米)

练习5:

1、有甲、乙、丙三人,甲每分钟行70米,乙每分钟行60米,丙每分钟行75米,甲、乙从A地去B地,丙从B地去A地,三人同时出发,丙遇到甲8分钟后,再遇到乙。

A、B两地相距多少千米?

 

2、一只狼以每秒15米的速度追捕在它前面100米处的兔子。

兔子每秒行4.5米,6秒钟后猎人向狼开了一枪。

狼立即转身以每秒16.5米的速度背向兔子逃去。

问:

开枪多少秒后兔子与狼又相距100米?

 

3、甲、乙两车同时从A地开往B地,乙车6小时可以到达,甲车每小时比乙车慢8千米,因此比乙车迟一小时到达。

A、B两地间的路程是多少千米?

 

第33周行程问题

(一)

一、知识要点

行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:

(1)相遇问题;

(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:

距离=速度×时间。

它大致分为以下三种情况:

(1)相向而行:

相遇时间=距离÷速度和

(2)相背而行:

相背距离=速度和×时间。

(3)同向而行:

速度慢的在前,快的在后。

追及时间=追及距离÷速度差

在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

二、精讲精练

【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少小时?

解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。

这句话的实质就是:

“乙48分钟行了24千米”。

可以先求乙的速度,然后根据路程求时间。

也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:

乙车速度:

24÷48×60=30(千米/小时)

甲行完全程的时间:

165÷30—

=4.7(小时)

解法二:

48×(165÷24)—48=282(分钟)=4.7(小时)

答:

甲车行完全程用了4.7小时。

练习1:

1、甲、乙两地之间的距离是420千米。

两辆汽车同时从甲地开往乙地。

第一辆每小时行42千米,第二辆汽车每小时行28千米。

第一辆汽车到乙地立即返回。

两辆汽车从开出到相遇共用多少小时?

2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。

两车同时从两地开出,相遇时甲车距B地还有多少千米?

3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。

到10点钟时两车相距112.5千米。

继续行进到下午1时,两车相距还是112.5千米。

A、B两地间的距离是多少千米?

【例题2】两辆汽车同时从东、西两站相向开出。

第一次在离东站60千米的地方相遇。

之后,两车继续以原来的速度前进。

各自到达对方车站后都立即返回,又在距中点西侧30千米处相遇。

两站相距多少千米?

从两辆汽车同时从东、西两站相对开出到第二次相遇共行了三个全程。

两辆汽车行一个全程时,从东站出发的汽车行了60千米,两车走三个全程时,这辆汽车走了3个60千米。

这时这辆汽车距中点30千米,也就是说这辆汽车再行30千米的话,共行的路程相当于东、西两站路程的1.5倍。

找到这个关系,东、西两这站之间的距离也就可以求出来了。

所以

(60×3+30)÷1.5=140(千米)

答:

东、西两站相距140千米。

练习2:

1、两辆汽车同时从南、北两站相对开出,第一次在离南站55千米的地方相遇,之后两车继续以原来的速度前进。

各自到站后都立即返回,又在距中点南侧15千米处相遇。

两站相距多少千米?

2、两列火车同时从甲、乙两站相向而行。

第一次相遇在离甲站40千米的地方。

两车仍以原速继续前进。

各自到站后立即返回,又在离乙站20千米的地方相遇。

两站相距多少千米?

3、甲、乙两辆汽车同时从A、B两地相对开出。

第一次相遇时离A站有90千米。

然后各按原速继续行驶,分别到达对方车站后立即沿原路返回。

第二次相遇时在离A地的距离占A、B两站间全程的65%。

A、B两站间的路程是多少千米?

【例题3】A、B两地相距960米。

甲、乙两人分别从A、B两地同时出发。

若相向而行,6分钟相遇;若同向行走,80分钟甲可以追上乙。

甲从A地走到B地要用多少分钟?

甲、乙两人从同时同向出发到相遇,6分钟共行的路程是960米,那么每分钟共行的路程(速度和)是960÷6=160(米);甲、乙两人从同时同向出发到甲追上乙需用去80分钟,甲追乙的路程是960米,每分钟甲追乙的路程(速度差)是960÷80=12(米)。

根据甲、乙速度和与差,可知甲每分钟行(160+12)÷1=86(米)。

甲从A地到B地要用960÷86=11

(分钟),列算式为

960÷[(960÷6+960÷80)÷2]=11

(分钟)

答:

甲从A地走到B地要用11

分钟。

练习3:

1、一条笔直的马路通过A、B两地,甲、乙两人同时从A、B两地出发,若先跟乡行走,12分钟相遇;若同向行走,8分钟甲就落在乙后面1864米。

已知A、B两地相距1800米。

甲、乙每分钟各行多少米?

2、父子二人在一400米长的环行跑道上散步。

他俩同时从同一地点出发。

若想8背而行,2

分钟相遇;若同向而行,26

分钟父亲可以追上儿子。

问:

在跑道上走一圈,父子各需多少分钟?

3、两条公路呈十字交叉。

甲从十字路口南1350米处向北直行,乙从十字路口处向东直行。

同时出发10分钟后,二人离使字路口的距离相等;二人仍保持原来速度直行,又过了80分钟,这时二人离十字路口的距离又相等。

求甲、乙二人的速度。

【例题4】上午8时8分,小明骑自行车从家里出发。

8分钟后每爸爸骑摩托车去追他。

在离家4千米的地方追上了他,然后爸爸立即回家。

到家后他又立即回头去追小明。

再追上他的时候,离家恰好是8千米(如图33-2所示),这时是几时几分?

由题意可知:

爸爸第一次追上小明后,立即回家,到家后又回头去追小名,再追上小明时走了12千米。

可见小明的速度是爸爸的速度的

那么,小明先走8分钟后,爸爸只花了4分钟即可追上,这段时间爸爸走了4千米。

列式为

爸爸的速度是小明的几倍:

(4+8)÷4=3(倍)

爸爸走4千米所需的时间:

8÷(3—1)=4(分钟)

爸爸的速度:

4÷4=1(千米/分)

爸爸所用的时间:

(4+4+8)÷1=16(分钟)

16+16=32(分钟)

答:

这时是8时32分。

练习4:

1、A、B两地相距21千米,上午8时甲、乙分别从A、B两地出发,相向而行。

甲到达B地后立即返回,乙到达A地后立即返回。

上午10时他们第二次相遇。

此时,甲走的路程比乙走的多9千米,甲一共行了多少千米?

甲每小时走多少千米?

2、张师傅上班坐车,回家步行,路上一共要用80分钟。

如果往、返都坐车,全部行程要50千米;如果往、返都步行,全部行程要多长时间?

3、当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米。

如果乙和丙按原来的速度继续冲向终点,那么乙到达终点时将比丙领先多少米?

【例题5】甲、乙、丙三人,每分钟分别行68米、70.5米、72米。

现甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙和乙相遇后,又过2分钟与甲相遇。

东、西两镇相距多少器秒年米毫?

如图33-3所示,可以看出,乙、丙两人相遇时,乙比甲多行的路程正好是后来甲、丙2分钟所行的路程和,是(68+72)×2=280(米)。

而每分钟乙比甲多行70.5—68=2.5(米)可见,乙、丙相遇时间是280÷2.5=112(分钟),因此,求东、西两镇间的距离可用速度和乘以相遇时间求出。

列式为

乙、丙相遇时间:

(68+72)×2÷2.5=112(分钟)

东、西两镇相距的千米数:

(70.5+72)×112÷1000=15.96(千米)

练习5:

1、有甲、乙、丙三人,甲每分钟行70米,乙每分钟行60米,丙每分钟行75米,甲、乙从A地去B地,丙从B地去A地,三人同时出发,丙遇到甲8分钟后,再遇到乙。

A、B两地相距多少千米?

2、一只狼以每秒15米的速度追捕在它前面100米处的兔子。

兔子每秒行4.5米,6秒钟后猎人向狼开了一枪。

狼立即转身以每秒16.5米的速度背向兔子逃去。

问:

开枪多少秒后兔子与狼又相距100米?

3、甲、乙两车同时从A地开往B地,乙车6小时可以到达,甲车每小时比乙车慢8千米,因此比乙车迟一小时到达。

A、B两地间的路程是多少千米?

答案

练1

1、420×2÷(42+28)=12小时

2、900÷15×【15-900÷(900÷15+900÷10)】=540千米

3、甲、乙两车的速度和:

112.5×2÷(13-10)=75千米

A-B两地的距离:

75×(10-8)+112.5=262.5千米

练2

1、(55×3-15)÷1.5=100千米

2、40×3-20=100千米

3、90×3-(1+1-65%)=200千米

练3

1、【1800÷12-(1864-1800)÷8】÷2=71米

【1800÷12+(1864-1800)÷8】÷2=79米

2、400÷【(400÷2

+400÷26

)÷2】=5

400÷【(400÷2

-400÷26

)÷2】=6

3、速度和:

1350÷10=135米/分

速度差:

1350÷(10+80)=15米/分

甲速:

(135+15)÷2=75米/分

乙速:

(135-15)÷2=60米/分

练4

1、甲行路程:

(21×3+9)÷2=36千米

甲速:

36÷2=18千米

2、(80-50÷2)×2=110分

3、丙的行程:

60×

=48米

乙到达重点将比丙领先的米数:

60-48=12米

练5

1、(70+75)×【(75+60)×8÷(70-60)】÷1000=15.66千米

2、(15-4.5)×6÷(16.5+4.5)=3秒

3、8×6×(6+1)=336千米

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 理化生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1