聚氯乙烯生产工艺设计.docx

上传人:b****7 文档编号:9175058 上传时间:2023-02-03 格式:DOCX 页数:38 大小:263.56KB
下载 相关 举报
聚氯乙烯生产工艺设计.docx_第1页
第1页 / 共38页
聚氯乙烯生产工艺设计.docx_第2页
第2页 / 共38页
聚氯乙烯生产工艺设计.docx_第3页
第3页 / 共38页
聚氯乙烯生产工艺设计.docx_第4页
第4页 / 共38页
聚氯乙烯生产工艺设计.docx_第5页
第5页 / 共38页
点击查看更多>>
下载资源
资源描述

聚氯乙烯生产工艺设计.docx

《聚氯乙烯生产工艺设计.docx》由会员分享,可在线阅读,更多相关《聚氯乙烯生产工艺设计.docx(38页珍藏版)》请在冰豆网上搜索。

聚氯乙烯生产工艺设计.docx

聚氯乙烯生产工艺设计

  

课程设计

  题 目:

 年产40万吨聚氯乙烯工艺设计

院  系:

 化学环境与工程学院

  专 业:

 化学工程与工艺 班级:

09-1

学生姓名:

 牛娜申腾施佳娟

指导教师:

 高军、徐冬梅   

2012年10月20日

 

内容摘要

本文讲述了我国聚氯乙烯工业生产技术的发展进程和目前状况,包括原料路线、工艺设备、聚合工艺方法等。

本设计采用悬浮法生产聚氯乙烯,介绍了采用悬浮法生产PVC树脂工聚合机理,工艺过程中需要注意的问题,包括质量影响因素,工艺条件及合成工艺中的各种助剂选择,对聚合工艺过程进行详细的叙述。

并且从物料衡算、热量衡算和设备计算及选型三个方面进行准确的工艺计算,采取了防火防爆防雷等重要措施,对三废的处理回收等进行了叙述,画出了整个工艺的流程图、聚合釜设备图、汽提塔设备图。

关键词 :

聚氯乙烯; 生产技术;悬浮法;乙炔法;乙烯法;

防粘釜技术;

 

第一章文献综述ﻩ6

1.1国内外pvc发展状况及发展趋势6

1.2 单体合成工艺路线8

1.2.1乙炔路线8

1.2.2乙烯路线8

1.3.1本体法聚合生产工艺ﻩ9

1.3.2乳液聚合生产工艺ﻩ10

1.3.3悬浮聚合生产工艺ﻩ10

1.4聚合机理ﻩ11

1.4.1自由基聚合机理11

1.4.2链反应动力学机理12

1.4.3成粒机理与颗粒形态13

1.5工艺流程叙述ﻩ14

1.5.1加料系统14

1.5.3浆料汽提及废水汽提系统ﻩ16

第二章工艺计算17

2.1物料衡算ﻩ17

2.1.1聚合釜21

2.1.2混料槽22

2.1.3汽提塔ﻩ23

2.1.5气流干燥ﻩ24

2.1.6沸腾干燥25

2.1.7筛分包装25

2.1.8聚合釜数的确定ﻩ26

2.2.1热量衡算的意义和作用26

2.2.2热量衡算及所需的热质的量ﻩ26

2.2.3聚合釜的热量衡算27

2.3.1聚合釜ﻩ28

2.3.2混料槽ﻩ30

2.3.3汽提塔30

23.4离心机ﻩ31

第三章 非工艺部分ﻩ31

3.1厂内的防火防爆措施ﻩ31

3.4三废处理情况32

3.4.2电石渣上清液的处理32

3.4.3热水的综合利用33

3.4.4尾气的回收利用33

第四章 小结34

 

引言

 聚氯乙烯(PVC)是5大通用塑料之一,具有耐腐蚀、电绝缘、阻燃性和机械强度高等优异性能,广泛用于工农业及日常生活等各个领域,尤其是近年来建筑市场对PVC产品的巨大需求,使其成为具备相当竞争力的一个塑料品种。

  PVC糊树脂自20世纪30年代开发以来,已有近70年的历史。

目前全世界PVC糊树脂总生产能力约200万t/a,其中,西欧是PVC糊树脂生产厂家最多、产量最大的地区。

我国聚氯乙烯工业起步于于50年代,仅次于酚醛树脂是最早工业化生产的热塑性树脂,第一个PVC装置于1958年在锦西化工厂建成投产,生产能力为3000吨/年。

此后全国各地的PVC装置相继建成投产,到目前为止,我国有PVC树脂生产企业80余家,遍布全国29个省、市、自治区,总生产能力达220万吨/年70~75万t/a。

PVC树脂在我国塑料工业中具有举足轻重的地位,同时PVC作为氯碱工业中最大的有机耗氯产品,对维持氯碱工业的氯碱平衡具有极其重要的作用。

本设计为年产量40万吨聚氯乙烯车间聚合工段工艺。

本次设计采用了氯乙烯单体悬浮聚合工艺。

介绍了PVC的聚合工艺,合成聚氯乙烯的流程和设备,对整个生产工艺做出了详细的叙述。

 

第一章文献综述

1.1国内外pvc发展状况及发展趋势

 聚氯乙烯(PVC)是五大热塑性合成树脂之一,塑料制品是最早实现工业化的品种之一。

可通过模压、层合、注塑、挤塑、压延、吹塑中空等方式进行加工,而且具有较好的机械性能、耐化学腐蚀性和难燃性等特点,以其低廉的价格和非常突出的性能而广泛地用于生产板材、门窗、管道和阀门等硬制品,也用于生产人造革、薄膜、电线电缆等软制品。

近年来,尽管在发达国家受到来自环保等多方面的压力,但世界对的总需求量仍出现稳定的增长态势。

1992年,世界生产能力约为二千二百万吨,需求量为1900万吨;2002年世界总产能约为三千四百万吨,消费量约为二千八百万吨;2009年世界生产能力已上升到约三千九百万吨,需求量约为三千七百万吨;2010 年世界生产能力为4300万吨 ,需求量4200万吨。

尽管目前世界对PVC的生产和使用存在许多争议,特别在欧洲,对PVC生产和制品的环保制约政策越来越严厉,但由于性能优良,生产成本低廉,仍具有较强的活力,特别在塑料门窗、塑料管道等建材领域。

我国聚氯乙烯(PVC)工业起步于50年代,仅次于酚醛树脂是最早工业化生产的热塑性树脂,第一个PVC装置于1958年在锦西化工厂建成投产,生产能力为3000吨/年[1]。

此后全国各地的PVC装置相继建成投产,到目前为止,我国有PVC树脂生产企业80余家,遍布全国29个省、市、自治区,总生产能力达220万吨/年。

PVC由氯乙烯(VCM)聚合而成,工业生产一般采用4种聚合方式:

悬浮聚合、本体聚合、乳液聚合(禽微悬浮聚合)、溶液聚合。

其中悬浮法PVC(SPVC)树脂产量最高,占80%,其次是乳液法PVC(EPVC),本体法PVC(MPVC)。

VCM悬浮聚合是以水为介质,加入VCM、分散剂、引发剂、pH值调节剂等,在搅拌和一定温度条件下进行聚合反应;VCM本体聚合仅在VCM和引发剂存在下进行,无分散剂、表面活性剂等助剂;VCM乳液聚合在VCM、引发剂、乳化剂、H2O以及其他助剂存在下进行{而VCM溶液聚合是在VCM、;引发刘和溶剂存在下进行,这种方法有溶剂回收和残留污染问题,并且生产成本高,该方法已逐渐被悬浮法聚合或乳液法聚合代。

目前,生产PVC树脂主要采用悬浮法,少量采用乳液法及本体法。

现在,国内引进PVC生产技术及设备的项目有二十项左右,其中生产能力最大的两套设备是上海氯碱股份有限公司和齐鲁石化总公司的年产20万吨悬浮法PVC树脂装置,采用日本信越公司技术。

北京化工二厂、锦西化工厂、福州化工二厂引进美国B.F古德里奇公司悬浮法PVC树脂生产技术,生产高型号树脂,其它还有引进美国西方化学公司的高型号树脂和釜式汽提技术及设备,法国阿托公司、前德国布纳公司、日本吉昂公司、日本钟渊公司、日本三菱公司的糊树脂生产装置和技术、法国本体聚合技术和设备等,这些技术和设备的引进,使我国PVC树脂的生产技术和水平有了很大提高,产品品种有所增加,带动了我国PVC工业的发展[2]。

我国PVC树脂的消费主要分为两大类,一是软制品,约占总消费量的37.o%,主要包括电线电缆、各种用途的膜(根据厚度不同可分为压延膜、防水卷材、可折叠门等)、铺地材料、织物涂层、人造革、各类软管、手套、玩具、塑料鞋以及一些专用涂料和密封件等。

二是硬制品,约占总消费量的 53.0%,主要包括各种型材、管材、板材、硬片和瓶等。

预计今后几年我国PVC树脂的需求量将以年均约6.4%的速度增长,到2011年总消费量将达到约1250万吨,其中硬制品的年均增长速度将达到约7.0%,而在硬制品中异型材和管材的发展速度增长最快,年均增长率将达到约10.1%。

未来我国PVC树脂消费将继续以硬制品为主的方向发展[3]。

中国聚氯乙烯工业有着广阔的发展前景,中国地大物博、人口众多,为聚氯乙烯产品提供了广大的市场。

在进入21世纪以后,我们要学习和借鉴国外的先进技术和发展模式,结合我国的具体情况,发展我国的聚氯乙烯工业。

我们要发挥全行业的力量,克服前进过程中的各种困难,一定能够在较短的时间内赶上世界聚氯乙烯工业的先进水平。

1.2单体合成工艺路线

1.2.1乙炔路线

原料为来自电石水解产生的乙炔和氯化氢气体,在催化剂氧化汞的作用下反应生成氯乙烯。

具体工艺为:

从乙炔发生器来的乙炔气经水洗一塔温度降至35℃以下,在保证乙炔气柜至一定高度时,进入升压机组加压至80kpa·G左右,加压后的乙炔气先进入水洗二塔深度降温至10℃以下,再进入硫酸清净塔中除去粗乙炔气中的S、P等杂质。

 最后进入中和塔中和过多的酸性气体,处理后的乙炔气经塔顶除雾器除去饱和水分,制得纯度达98.5%以上,不含S、P的合格精制乙炔气送氯乙烯合成工序。

乙炔法路线VCM工业化方法,设备工艺简单,但耗电量大,对环境污染严重。

目前,该方法在国外基本上已经被淘汰,由于我国具有丰富廉价的煤炭资源,因此用煤炭和石灰石生成碳化钙电石、然后电石加水生成乙炔的生产路线具有明显的成本优势,我国的VCM生产目前仍以乙炔法工艺路线为主。

乙炔与氯化氢反应生成可采用气相或液VCM相工艺,其中气相工艺使用较多。

1.2.2乙烯路线

乙烯氧氯化法由美国公司Goodrich首先实现工业化生产,该工艺原料来源广泛,生产工艺合理,目前世界上采用本工艺生产的产能VCM约占总产能的VCM 95%以上。

乙烯氧氯化法的反应工艺分为乙烯直接氯化制二氯乙烷(EDC)、乙烯氧氯化制EDC和EDC裂解3个部分,生产装置主要由直接氯化单元、氧氯化单元、EDC裂解单元、EDC精制单元和VCM单元精制等工艺单元组成。

乙烯和氯气在直接氯化单元反应生成EDC。

乙烯、氧气以及循环的HCl在氧氯化单元生成EDC。

生成的粗EDC在EDC精制单元精制、提纯。

然后在精EDC裂解单元裂解生成的产物进入VCM单元,VCM精制后得到纯VCM产品,未裂解的EDC返回EDC精制单元回收,而HCl则返回氧氯化反应单元循环使用。

直接氯化有低温氯化法和高温氯化法;氧氯化按反应器型式的不同有流化床法和固定床法,按所用氧源种类分有空气法和纯氧法;EDC裂解按进料状态分有液相进料工艺和气相进料工艺等。

具有代表性的司的Inovyl工艺是将乙烯氧氯化法提纯的循环EDC和VCM直接氯化的EDC在裂解炉中进行裂解生产VCM。

HCl经急冷和能量回收后,将产品分离出HCl(循环用于氧氯化)、高纯度VCM和未反应的EDC(循环用于氯化和提纯)。

来自VCM装置的含水物流被汽提,并送至界外处理,以减少废水的生化耗氧量(BOD)。

采用该生产工艺,乙烯和氯的转化率超过98%,目前世界上已经有50多套装置采用该工艺技术,总生产能力已经超过470万吨/年[6]。

本设计采用乙烯路线生产氯乙烯单体。

1.3聚合工艺路线

 在工业化生产氯乙烯均聚物时,根据树脂应用领域,一般采用4种方法生产,即本体聚合法、悬浮聚合法、乳液聚合法和溶液聚合法。

目前工业上是以悬浮聚合法为主,约占聚氯乙烯产量的80%~90%,其次为乳液聚合法。

下面介绍本体法、乳液法、悬浮法三种生产工艺。

1.3.1本体法聚合生产工艺

氯乙烯非均相本体聚合一般采用“两段本体聚合法”。

第一段称为预聚合,在预聚釜中加人定量的液态VCM单体、引发剂和添加剂,在62-75℃下进行强搅拌(相对第2步聚合过程),釜内保持恒定的压力和温度。

当VCM的转化率达到8%-12%停止反应;第二段称为“后聚合”,聚合釜在接收到预聚合的“种子”后,再加人一定量的VCM单体、添加剂和引发剂,在这些“种子”的基础上继续聚合,使“种子”逐渐长大到一定的程度,在约60℃温度下低速搅拌,保持恒定压力进行聚合反应。

当反应转化率达到60%一85%(根据配方而定)时终止反应,并在聚合釜中脱气、回收未反应的单体,而后在釜内汽提,进一步脱除残留在PVC粉料中的VCM(回收的单体经精制压缩后循环利用),最后经风送系统将釜内PVC粉料送往分级、均化和包装工序。

整个过程中物料状态时由低粘态逐渐变成粘稠态而最终形成粉料。

此方法的特点是反应过程中不需要加水和分散剂,后处理过程简单。

1.3.2乳液聚合生产工艺

乳液聚合法:

氯乙烯单体在乳化剂作用下,分散于水中形成乳液,再用水溶性的引发剂来引发,进行聚合。

引发剂溶解在水中,分解形成初始自由基进入增溶胶束,引发聚合,生成大分子链,胶束逐渐变成被单体溶胀的聚合物乳液胶体即乳胶粒,乳胶粒随聚合反应的进行逐渐长大直至单体消耗完。

聚氯乙烯胶乳可用盐类使聚合物析出,再经洗涤、喷雾干燥得到糊状树脂,工业上称之为糊树脂。

该树脂常用于PVC糊的制备。

1.3.3悬浮聚合生产工艺

悬浮聚合法生产聚氯乙烯树脂的一般工艺过程是在聚合釜中加入无离子水和悬浮剂,加入引发剂后密封聚合釜,真空脱除釜内空气和溶于物料的氧,然后加入氯乙烯单体开始升温搅拌,借助搅拌作用,将单体分散成小液滴,聚合反应发生在各个单体液珠内。

一般聚合温度在45~70℃之间。

使用低温聚合时(如42~45℃),可生产高分子质量的聚氯乙烯树脂;使用高温聚合时(一般在62~71℃)可生产出低分子质量(或超低分子质量)的聚氯乙烯树脂。

聚合完成后抽出未反应的单体和浆料进行汽提,回收氯乙烯单体,抽出气体后的浆料进行离心分离,再进入干燥器干燥至含水0.3%~0,4%,过筛后即得产品。

流程图见图

选取不同的悬浮分散剂,可得到颗粒结构和形态不同的两类树脂。

国产牌号分为SG-疏松型(“棉花球”型)树脂;XJ-紧密型(“乒乓球”型)树脂。

近年来,为了提高聚合速度和生产效率,国外还研究成功两步悬浮聚合工艺,一般是第一步聚合度控制在60℃左右,在第二步聚合前加入部分新单体继续聚合。

采用两步法聚合的优点是显著缩短了聚合周期,生产出的树脂具有良好的凝胶性能、模塑性能和机械强度。

本设计采用悬浮法PVC生产技术。

1.4聚合机理

1.4.1自由基聚合机理

氯乙烯悬浮聚合反应,属于自由基链锁加聚反应,它的反应一般由链引发,链增长,链终止,链转移及基元反应组成。

1链引发 过氧化物引发剂受热后过氧链断裂生成两个自由基:

初级自由基与VCM形成单体自由基。

I

②链增长单体自由基具有很高的活性,所以打开单体的双键形成自由基,新的自由基活性并不衰减,继续与其它单体反应生成更多的链自由基。

 ③链终止聚合反应不断进行,当达到一定的聚合度,分子链己足够长,单体的浓度逐渐降低,使大分子的活动受到限制,就会大分子失去活性即失去电子而终止与其它氯乙烯活性分子反应。

终止有偶合终止和歧化终止。

 l)偶合终止 两个活性大分子自由基相遇时,两个自由基头部独立电子对配对形成共价键所形成的饱和大分子叫偶合终止。

2)歧化终止

两个活性大分子自由基相遇时,其中一个自由基夺取另一个自由基上的氢原子而饱和,另一个高分子自由基失去一个氢原子而带有不饱和基团,这种终止反应的方式叫双基歧化终止。

有时活性大分子自由基与金属器壁中的自由电子结合而终止,即形成粘釜。

④链转移 在氯乙烯聚合反应中,大分子自由基可以从单体,溶剂,一个氯原子或氢原子而终止,失去原子的分子将成为自由基,引发剂或大分子上夺取继续进行新的链增长反应。

包括向单体的氯转移、向溶剂链转移、向引发剂链转移、向大分子。

1.4.2链反应动力学机理

   链反应动力学来看,根据转化率可分为三阶段:

①转化率<5%阶段。

聚合反应发生在单体相中,由于所产生的聚合物数量甚少,反应速度服从典型的动力学方程,聚合反应速度与引发剂用量的平方根成正比,当聚合物的生产量增加后,则聚合速度由于kt降低而发生偏差。

  ②转化率5%~65%阶段。

聚合反应在富单体和聚氯乙烯——单体凝胶中间是进行,并且产生自动加速现象。

其原因在于链终止反应主要在两个增长的大分子自由基之间进行,而他们在粘稠的聚合物——单体凝胶相的扩散速度显著降低,因而链终止速度减慢,所以聚合速度加快,呈现自动加速现象。

2转化率>65%阶段。

转化率超过65%以后,游离的氯乙烯基本上消失,釜内压力开始下降,此时聚合反应发生在聚合物凝胶相中,由于残存的氯乙烯逐渐消耗,凝胶相得粘度迅速增高,因此聚合反应速度仍继续上升,大到最大值后逐渐降低。

当聚合反应速率低于总反应速率以后,使反应终止。

1.4.3成粒机理与颗粒形态

关于氯乙烯悬浮聚合过程生成多孔性不规整的理论解释,认为成粒过程分为两部分;

①单体在水中的分散和发生在水相和氯乙烯——水相界面发生的反应,此过程主要控制聚氯乙烯颗粒的大小及其分布。

②在单体液滴内和聚氯乙烯凝胶相内发生的化学与物理过程,此过程主要控制所得聚氯乙烯颗粒的形态。

 在聚合反应釜中液态氯乙烯单体在强力搅拌和分散剂的作用下,被破碎为平均直径30~40μm的液珠分散于水相中,单体液珠与水相得界面上吸附了分散剂。

当聚合反应发生以后,界面层上的分散剂发生氯乙烯接枝聚合反应,使分散剂的活动性和分散保护作用降低,液珠开始由于碰击而合并为较大粒子,并处于动态平衡状态。

此时单体转化率约为4%~5%。

当转化率进一步提高,达到20%左右后,由于分散剂接枝反应的色深入,能够阻止粒子碰击合并,所以所得聚氯乙烯颗粒数目开始处于稳定不变的状态,因而此后的搅拌速度对于产品的平均粒径不再发生影响。

最终产品的粒径在100~180μm范围,个商品牌号的粒径个有其具体范围,取决于生产的聚氯乙烯树脂用途、分散剂类型、用量和反应起始阶段的搅拌速度等参数。

通常是使用的分散剂浓度高,则易得空隙率低(≤10%)的圆球状树脂颗粒,尤其是使用明胶作为分散剂是,其影响最为明显。

由于地孔隙率树脂的反应结束后,脱除残存的单体较困难,而且吸收增塑剂速度慢,难以塑化所以逐渐淘汰。

产品的平均粒径因不同用途而有所不同要求:

用于生产软质制品的聚氯乙烯树脂平均粒径要求低些在100~130μm左右;用于生产硬质制品者要求在150~180μm范围;分子量较低的牌号则要求在130~160μm范围。

此数据不能绝对化,因工厂生产条件的不同而有所不同。

转移。

1.5工艺流程叙述

1.5.1加料系统

 (1)VCM的贮存与加料:

从VCM车间运送来的新鲜单体VCM,经过过滤器

(1)进入VCM贮槽

(2)中贮存,同时由VCM回收工序来的回收VCM贮存在回收VCM贮槽(7)中。

用VCM泵(3)连续从回收贮槽抽料、并经过VCM加料过滤器(5a,b)过滤,循环回收到VCM贮槽(7)中。

目的是保留VCM加料的压力,使VCM不汽化,以避免再加料时损坏流量计。

加料时(4)泵先加回收单体,(6)泵后加新鲜单体,回收和新鲜单体有一定配比。

(2)脱盐水的贮存与加料:

冷脱盐水(来自界区)经计量进入冷脱盐水贮槽(13)中或热脱盐水贮槽(17)中。

冷脱盐水经加热器(15)加热到要求温度后进入热脱盐水贮槽(17)中,待加料用,该槽有温度范围或液位低时聚合釜不能入料。

加料时,根据聚合温度的要求把冷热脱盐水混合,用冷脱盐水加料泵(14)和热脱盐水加料泵(18)打入聚合釜中,混合温度在两泵出口汇总管处由冷、热脱盐水量来调节。

(3) 注入水与冲洗水的加料:

注入水泵(20),从冷脱盐水贮槽(13)抽水向各脱盐水用户供水,泵出口压力2.1Pa用于聚合釜轴封、浆料泵(46)、块料破碎机(48)等。

此泵有稳压系统,另外该泵出口脱盐水还用于聚合釜的注入水,比保证釡内容积恒定。

冲洗水泵泵出口压力1.1MPa,用于冲洗管理,并为助剂配制提水,同时为冲洗水增压泵(16)提供水及设备冲洗水,冲洗水泵的水经冲洗水增压泵(16)增压后向聚合釡(42)、回收分离器(54)、汽提加料槽(61)等提供1.4MPa的冲洗水。

(4)助剂的配制及加料:

① 缓冲剂系统

缓冲剂是在配制槽(37)中配制,配制时需15~30分钟,不设单独贮槽,加缓冲剂时,计算机程序关闭循环线,打开充料伐,经(38)充装泵,将缓冲剂加到称重槽(39)中到规定时间用加料泵(40)加入到聚合釜(42)中,同时重新使用循环系统使缓冲剂配制槽中物料续循环。

②分散剂系统

 本设计采用两种分散剂混合使用。

分散剂A:

分散剂在配制槽(31)中配制,分散剂加料时,先将分散剂打入计量槽(此时循环已停),达到定量后,启动循环系统,同时计量槽中分散剂用充装泵(36)打入聚合釜。

分散剂B:

配置过程如分散剂(I),然后将配制好的分散剂(II)放入分散剂贮槽(33)中单独贮存,同样有个冷冻盐水冷却并用充装泵(34)循环。

此溶液搅拌较强烈,以防分散剂分离。

 ③ 调节剂的配制

调节剂在有局部搅拌的调节剂贮槽(9)内贮存,加料时用调节剂充装泵(10)计量加入聚合釜(42),此管线带压无需冲洗。

④引发剂系统

引发剂在引发剂配制槽(25)中配制,配制合格后放入引发剂贮槽(26)中贮存待用。

引发剂贮槽(26)用冷却水冷却到规定的低温,搅拌并用循环泵(27)打循环。

加引发剂时,先由贮槽(26)放到引发剂称重槽(28)中,然后用加料泵(29)定量加入聚合釜(42)内。

⑤ 终止剂系统

终止剂在带搅拌和排空装置的不锈钢容器(11)中配制,先将定量的脱盐水和NaOH加入到终止剂配制槽(11)中,开动搅拌后将定量的终止剂加入到配制槽(11)中,当聚合达到规定转化率时,需加终止剂。

加终止剂时,按规定的程序,用终止剂充装泵(12)从终止剂贮槽(11)中抽出,配方量的终止剂经计量后从注入管加入聚合釜,加终止剂时应关闭注入水切断阀,加完终止剂后应关闭聚合釜终止剂阀及终止剂泵出口阀,停泵。

事故终止剂NO,在停车或停电等紧急情况下加入聚合釜、迅速终止聚反应。

⑥涂壁系统

涂壁剂溶液在配制槽(22)中按规定配方进行配度和贮存。

聚合出料完毕后,用高压水(14Kg/㎝2G)冲洗釜90秒钟,废水用浆料泵(43),打至废水贮罐(57)中,洗涤后进行涂壁操作。

1.5.2聚合系统

 若聚合釜打开过釡盖,则需抽真空真空度为710mmHg柱,将缓冲剂加到脱盐水总管内,然后用脱盐水把缓冲剂带入到聚合釜。

脱盐水启动后,加入VCM、开动搅拌,当脱盐水和VCM加完后,釜内温度应接近聚合温度,继续搅拌一定时间,使VCM液滴在水中形成,然后加入分散剂,继续搅拌一定时间,以保证分散体系形成,最后加入引发剂,使聚合反应开始。

 聚合反应开始后,向挡板通入冷却水并达到最大流量,然后向夹套中通入冷却水,并保持反应温度,冷却水流量由计算机根据聚合釜上、中、下温度控制,同时计算机计算出反应放出的热量,并与聚氯乙烯聚合动力浮模型的理论计算值比较,计算出VCM到PVC的转化率。

  聚合反应开始后,两股注入水应加入聚合釜,以保证釡内容积恒定,一股注入水来自聚合釜搅拌器的轴封衬套、另一股由釡顶注入。

 聚合反应终点,可依据反应时温度或测定单体转化率及根据压力降来确定,通常按压力降来确定,当聚合反应到达终点时,定量的终止剂将自动加入到聚合釜内以终止聚合反应。

出料结束后,用1.4Mpa的水冲洗后即可即可进行涂壁操作准备。

1.5.3浆料汽提及废水汽提系统

(1)浆料汽提系统

由汽提塔浆料槽(47)底部来的浆料,经块料破碎机(48)破碎后,用汽提塔供给泵(49)经板式换热器(50)与汽提完毕的浆料换热,一部分从塔顶加入汽提塔,另一部分回流到浆料槽(47),同时蒸汽由汽提塔底部进入;VCM由蒸汽汽提带走。

塔釜浆料由塔底浆料泵(46)送出,并与浆料槽(47)来的浆料换热后,一部分送到浆料混料槽(84),另一部分返回塔釜液位同时防止浆料中PVC沉降,汽提完毕的浆料中,VCM残留量在30PPm左右,塔顶出来的含VCM的蒸汽,用冷凝器(53)冷凝,由分离器(54)分离,冷凝液用分离器底泵(56)送至废水贮槽(57),未凝的汽提经过滤器(55)过滤,送至VCM回收工序,浆料送至干燥工序。

(2)废水汽提系统

这些废水贮存在废水贮槽(57)中,由塔底泵(58)打出与废水汽提塔(61)底出来的热水换热器(59)后,一部分由塔顶加入废水汽提塔(61)中,另一部分循环,同时蒸汽由塔底加入与废水进行传质交换后,废水中VCM提出并由塔顶带走,随后进入塔顶冷凝器(62)冷凝,不凝液去压缩机(63)压缩回收,冷凝液回收到废

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 自然景观

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1