高一物理上学期期末合格考知识点复习计划与资料.docx

上传人:b****7 文档编号:9136194 上传时间:2023-02-03 格式:DOCX 页数:57 大小:785.64KB
下载 相关 举报
高一物理上学期期末合格考知识点复习计划与资料.docx_第1页
第1页 / 共57页
高一物理上学期期末合格考知识点复习计划与资料.docx_第2页
第2页 / 共57页
高一物理上学期期末合格考知识点复习计划与资料.docx_第3页
第3页 / 共57页
高一物理上学期期末合格考知识点复习计划与资料.docx_第4页
第4页 / 共57页
高一物理上学期期末合格考知识点复习计划与资料.docx_第5页
第5页 / 共57页
点击查看更多>>
下载资源
资源描述

高一物理上学期期末合格考知识点复习计划与资料.docx

《高一物理上学期期末合格考知识点复习计划与资料.docx》由会员分享,可在线阅读,更多相关《高一物理上学期期末合格考知识点复习计划与资料.docx(57页珍藏版)》请在冰豆网上搜索。

高一物理上学期期末合格考知识点复习计划与资料.docx

高一物理上学期期末合格考知识点复习计划与资料

复习计划

日期

 

内容

每日一重点题目

匀变速直线运动的研究

 

追及、相遇与避碰问题

 

三力平衡:

合成法

 

三力平衡:

正交分解、拉米定理

 

三力平衡:

力边三角形相似

 

活结死结活杆死杆

 

矢量三角形

 

牛顿第一、三定律

 

实验:

探究加速度与力、质量的关系

 

牛顿第二定律

 

牛顿第二定律

 

牛顿第二定律

 

超失重

 

期末综合卷

 

期末综合卷

 

自由

 

 

第一章运动的描述匀变速直线运动

第1讲 运动的描述

一、质点和参考系

1.质点

(1)用来代替物体的有质量的点叫做质点.

(2)研究一个物体的运动时,如果物体的形状和大小对所研究问题的影响可以忽略,就可以看做质点.

(3)质点是一种理想化模型,实际并不存在.

2.参考系

(1)参考系可以是运动的物体,也可以是静止的物体,但被选为参考系的物体,我们都假定它是静止的.

(2)比较两物体的运动情况时,必须选同一参考系.

(3)选取不同的物体作为参考系,对同一物体运动的描述可能不同.通常以地球为参考系.

二、位移和速度

1.位移和路程

(1)定义:

位移表示质点位置的变动,它是质点由初位置指向末位置的有向线段;路程等于质点运动轨迹的长度.

(2)区别:

位移是矢量,方向由初位置指向末位置;路程是标量,没有方向.

(3)联系:

在单向直线运动中,位移的大小等于路程;其他情况下,位移的大小小于路程.

2.速度与速率

(1)平均速度和瞬时速度

 

平均速度

瞬时速度

物理意义

粗略描述某段时间内(或某段位移上)物体运动的平均快慢程度

精确描述某一时刻(或某一位置)物体运动的快慢程度

大小

位移与所用时间之比

当时间间隔非常小时,平均速度等于瞬时速度

方向

与位移的方向相同

沿轨迹上该点的切线且指向前进的方向

 

(2)速率:

物体运动的瞬时速度的大小.

三、速度和加速度

1.速度变化量

(1)物理意义:

描述物体速度改变的物理量,是过程量.

(2)定义式:

Δv=v-v0.

(3)决定因素:

Δv由v与v0进行矢量运算得到,由Δv=aΔt知Δv由a与Δt决定.

(4)方向:

由a的方向决定.

2.加速度

(1)物理意义:

描述物体速度变化快慢和方向的物理量,是状态量.

(2)定义式:

a==.

(3)决定因素:

a不是由v、Δt、Δv来决定,而是由来决定.

(4)方向:

与Δv的方向一致,由合外力的方向决定,而与v0、v的方向无关.

第2讲 匀变速直线运动的规律

一、匀变速直线运动的规律

1.匀变速直线运动:

沿一条直线且加速度不变的运动.

2.匀变速直线运动的基本规律

(1)速度公式:

v=v0+at.

(2)位移公式:

x=v0t+at2.

(3)位移速度关系式:

v2-v=2ax.

二、匀变速直线运动的推论

1.三个推论

(1)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初、末时刻速度矢量和的平均值,还等于中间时刻的瞬时速度.

平均速度公式:

==

.

(2)连续相等的相邻时间间隔T内的位移差相等.

即x2-x1=x3-x2=…=xn-xn-1=aT2.

(3)位移中点速度

=.

2.初速度为零的匀加速直线运动的四个重要推论

(1)1T末,2T末,3T末,…,nT末的瞬时速度之比为v1∶v2∶v3∶…∶vn=1∶2∶3∶…∶n.

(2)1T内,2T内,3T内,…,nT内的位移之比为x1∶x2∶x3∶…∶xn=12∶22∶32∶…∶n2.

(3)第1个T内,第2个T内,第3个T内,…,第n个T内的位移之比为xⅠ∶xⅡ∶xⅢ∶…∶xN=1∶3∶5∶…∶(2n-1).

(4)从静止开始通过连续相等的位移所用时间之比为t1∶t2∶t3∶…∶tn=1∶(-1)∶(-)∶(2-)∶…∶(-).

[深度思考] 飞机着陆后以6m/s2的加速度做匀减速直线运动,若其着陆速度为60m/s,则它着陆后12s内滑行的距离是多少?

 

某位同学的解法如下:

由位移公式x=v0t+at2,代入已知量求得滑行距离x=288m,请分析以上解析是否正确,若不正确,请写出正确的解析.

答案 不正确.解析如下:

先求出飞机着陆后到停止所用时间t.由v=v0+at,得t==s=10s,由此可知飞机在12s内不是始终做匀减速运动,它在最后2s内是静止的.故它着陆后12s内滑行的距离为x=v0t+=60×10m+(-6)×m=300m.

三、自由落体运动和竖直上抛运动

1.自由落体运动

(1)条件:

物体只受重力,从静止开始下落.

(2)基本规律

①速度公式:

v=gt.

②位移公式:

x=gt2.

③速度位移关系式:

v2=2gx.

2.竖直上抛运动

(1)运动特点:

加速度为g,上升阶段做匀减速运动,下降阶段做自由落体运动.

(2)运动性质:

匀减速直线运动.

(3)基本规律

①速度公式:

v=v0-gt;

②位移公式:

x=v0t-gt2.

3.伽利略对自由落体运动的研究

(1)伽利略通过逻辑推理的方法推翻了亚里士多德的“重的物体比轻的物体下落快”的结论.

(2)伽利略对自由落体运动的研究方法和科学的推理方法,是人类思想史上最伟大的成就之一.他所用的研究方法是逻辑推理―→猜想与假设―→实验验证―→合理外推.这种方法的核心是把实验和逻辑推理(包括数学演算)和谐地结合起来.

第二章相互作用

第3讲 重力 弹力 摩擦力

一、重力

1.产生:

由于地球吸引而使物体受到的力.注意:

重力不是万有引力,而是万有引力竖直向下的一个分力.

2.大小:

G=mg,可用弹簧测力计测量.注意:

(1)物体的质量不会变;

(2)G的变化是由在地球上不同位置处g的变化引起的.

3.方向:

总是竖直向下的.注意:

竖直向下是和水平面垂直,不一定和接触面垂直,也不一定指向地心.

4.重心:

物体的每一部分都受重力作用,可认为重力集中作用于一点即物体的重心.

(1)影响重心位置的因素:

物体的几何形状;物体的质量分布.

(2)不规则薄板形物体重心的确定方法:

悬挂法.注意:

重心的位置不一定在物体上.

二、弹力

1.弹性形变:

撤去外力作用后能够恢复原状的形变.

2.弹力:

(1)定义:

发生形变的物体由于要恢复原状而对与它接触的物体产生的作用力.

(2)产生条件:

①物体间直接接触;

②接触处发生形变.

(3)方向:

总是与施力物体形变的方向相反.

3.胡克定律:

(1)内容:

在弹性限度内,弹力和弹簧形变大小(伸长或缩短的量)成正比.

(2)表达式:

F=kx.

①k是弹簧的劲度系数,单位是牛顿每米,用符号N/m表示;k的大小由弹簧自身性质决定.

②x是弹簧长度的变化量,不是弹簧形变以后的长度.

[深度思考] 如图1所示,一重为10N的球固定在支撑杆AB的上端,今用一段绳子水平拉球,使杆发生弯曲,已知绳的拉力为7.5N,则AB杆对球的作用力方向及大小为多少?

由此说明杆弹力的方向有什么特点?

答案 AB杆对球的作用力与水平方向夹角为53°,大小为12.5N 杆弹力的方向不一定沿杆方向

解析 对小球进行受力分析可得,AB杆对球的作用力F和绳的拉力的合力与小球的重力等大、反向,可得F方向斜向左上方,令AB杆对小球的作用力与水平方向夹角为α,可得:

tanα==,α=53°,F==12.5N.说明杆弹力的方向不一定沿杆方向.

三、摩擦力

1.静摩擦力与滑动摩擦力

名称

项目

静摩擦力

滑动摩擦力

定义

两相对静止的物体间的摩擦力

两相对运动的物体间的摩擦力

产生条件

①接触面粗糙

②接触处有压力

③两物体间有相对运动趋势

①接触面粗糙

②接触处有压力

③两物体间有相对运动

大小

0

Ff=μFN

方向

与受力物体相对运动趋势的方向相反

与受力物体相对运动的方向相反

作用效果

总是阻碍物体间的相对运动趋势

总是阻碍物体间的相对运动

2.动摩擦因数

(1)定义:

彼此接触的物体发生相对运动时,摩擦力和正压力的比值.μ=.

(2)决定因素:

接触面的材料和粗糙程度.

[深度思考]

判断下列说法是否正确.

(1)静止的物体不可能受滑动摩擦力,运动的物体不可能受静摩擦力.(×)

(2)滑动摩擦力一定是阻力,静摩擦力可以是动力,比如放在倾斜传送带上与传送带相对静止向上运动的物体.(×)

(3)运动物体受到的摩擦力不一定等于μFN.(√)

第4讲 力的合成与分解

一、力的合成

1.合力与分力

(1)定义:

如果几个力共同作用产生的效果与一个力的作用效果相同,这一个力就叫做那几个力的合力,那几个力叫做这一个力的分力.

(2)关系:

合力与分力是等效替代关系.

2.力的合成

(1)定义:

求几个力的合力的过程.

(2)运算法则

①平行四边形定则:

求两个互成角度的分力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.如图1甲,F1、F2为分力,F为合力.

②三角形定则:

把两个矢量的首尾顺次连接起来,第一个矢量的首到第二个矢量的尾的有向线段为合矢量.如图乙,F1、F2为分力,F为合力.

[深度思考] 判断下列说法是否正确.

(1)两个力的合力一定大于任一个分力.(×)

(2)合力与分力是等效替代关系,因此受力分析时不能重复分析.(√)

(3)1N和2N的合力一定等于3N.(×)

(4)合力可能大于每一个分力,也可能小于每一个分力,还可能大于一个分力而小于另一个分力.(√)

二、力的分解

1.定义:

求一个力的分力的过程.力的分解是力的合成的逆运算.

2.遵循的原则

(1)平行四边形定则.

(2)三角形定则.

3.分解方法

(1)效果分解法.如图2所示,物体的重力G的两个作用效果,一是使物体沿斜面下滑,二是使物体压紧斜面,这两个分力与合力间遵循平行四边形定则,其大小分别为G1=Gsinθ,G2=Gcosθ.

(2)正交分解法.

三、矢量和标量

1.矢量:

既有大小又有方向的物理量,叠加时遵循平行四边形定则,如速度、力等.

2.标量:

只有大小没有方向的物理量,求和时按代数法则相加,如路程、速率等.

第三章牛顿运动定律

第5讲 牛顿第一定律 牛顿第三定律

一、牛顿第一定律 惯性

1.牛顿第一定律

(1)内容:

一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.

(2)意义:

①揭示了物体的固有属性:

一切物体都有惯性,因此牛顿第一定律又叫惯性定律;

②揭示了力与运动的关系:

力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.

2.惯性

(1)定义:

物体具有保持原来匀速直线运动状态或静止状态的性质.

(2)量度:

质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.

(3)普遍性:

惯性是物体的固有属性,一切物体都具有惯性,与物体的运动情况和受力情况无关.

深度思考

 判断下列说法是否正确.

(1)牛顿第一定律不能用实验验证.(√)

(2)在水平面上滑动的木块最终停下来,是因为没有外力维持木块运动的结果.(×)

(3)物体运动时受到惯性力的作用.(×)

(4)物体匀速运动时才有惯性,加速时没有惯性.(×)

二、牛顿第三定律

1.作用力和反作用力:

两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,后一个物体同时对前一个物体也施加力.

2.内容:

两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上.

3.表达式:

F=-F′.

第6讲 牛顿第二定律 两类动力学问题

一、牛顿第二定律

1.内容:

物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比.加速度的方向跟作用力的方向相同.

2.表达式:

F=ma,F与a具有瞬时对应关系.

3.力学单位制

(1)单位制:

由基本单位和导出单位共同组成.

(2)基本单位:

基本物理量的单位.力学中的基本物理量有三个,分别是质量、时间和长度,它们的国际单位分别是千克(kg)、秒(s)和米(m).

(3)导出单位:

由基本物理量根据物理关系推导出来的其他物理量的单位.

深度思考

 判断下列说法是否正确.

(1)物体所受合外力越大,加速度越大.(√)

(2)物体所受合外力越大,速度越大.(×)

(3)物体在外力作用下做匀加速直线运动,当合外力逐渐减小时,物体的速度逐渐减小.(×)

(4)物体的加速度大小不变一定受恒力作用.(×)

二、动力学两类基本问题

1.动力学两类基本问题

(1)已知受力情况,求物体的运动情况.

(2)已知运动情况,求物体的受力情况.

2.解决两类基本问题的方法

以加速度为“桥梁”,由运动学公式和牛顿运动定律列方程求解,具体逻辑关系如图:

三、超重和失重

1.超重

(1)定义:

物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象.

(2)产生条件:

物体具有向上的加速度.

2.失重

(1)定义:

物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象.

(2)产生条件:

物体具有向下的加速度.

3.完全失重

(1)定义:

物体对支持物的压力(或对竖直悬挂物的拉力)等于0的现象称为完全失重现象.

(2)产生条件:

物体的加速度a=g,方向竖直向下.

4.实重和视重

(1)实重:

物体实际所受的重力,它与物体的运动状态无关.

(2)视重:

当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.

5.情景拓展(如图2所示)

 

 

专题:

匀变速直线运动的研究

【5分钟核心要点背写】

【20分钟限时训练】         

1.A 天空有近似等高的浓云层。

为了测量云层的高度,在水平地面上与观测者的距离为d=3.0km处进行一次爆炸,观测者听到由空气直接传来的声和由云层反射来的爆炸声时间上相差△t=6.0s。

试估算云层下表面的高度。

已知空气中的声速v=

km/s。

2.B 下面说法中正确的是(  )

A.路程是标量,只有大小;位移是标量,有大小还有方向

B.在一段曲线运动中,路程的大小是不等于位移的大小的

C.在一段直线运动中,路程的大小是等于位移大小的

D.+3m的位移比-5m的位移要大

3.B 打点计时器的主要作用是记录物体直线运动时位置随时间的变化。

下图是某同学用手加速拉出的一条纸带。

 

(1)该同学是从哪边拉的?

(2)求CF段的平均速度。

(3)如何求D点的速度?

(4)某同学列式v=(6.45cm-1.40cm)/0.04s

=1.26m/s,这求的是哪个点的速度?

4.A 物体自由落体,第1秒内、第2秒内、第3秒内下落的高度各是多少?

若一物体下落1秒后,在同一位置再下落一物体,1秒后两物体相距多少?

2秒后相距多少?

 

 5.B 某航空母舰甲板长90m,以20m/s的速度在海面上匀速航行,静止于甲板尾部的某战斗机采用匀加速的方式从甲板另一端以相对于地面50m/s的速度飞离甲板,该飞机起飞过程的加速度为多少?

6.C 已知O、A、B、C为同一直线上的四点。

AB间的距离为l1,BC间的距离为l2,一物体自O点由静止出发,沿此直线做匀加速运动,依次经过A、B、C三点,已知物体通过AB段与BC段所用的时间相等。

求O与A的距离。

 

【课后作业】

7.B 一辆小车(可视为质点)从斜面顶端由静止开始滑下,到达斜面底端时有圆滑过渡使得小车速率不会突变。

然后小车在水平地面上滑行一段时间后停下。

已知小车在斜面上运动的时间只有在地面上滑行时间的1/3,那么小车在斜面上运动的长度与在地面上运动的长度之比是多少?

 

 

8.C 某航母上的舰载机起飞需要50m/s的速度,航母的跑道长为100m,飞机在跑道上加速时的加速度为8m/s2。

为了使得飞机可以顺利起飞,需要飞机在刚出发时就利用弹射装置获得一个初速度。

(1)弹射装置应该给飞机提供多大的初速度?

(2)如果弹射装置失灵,有什么办法让飞机顺利起飞?

9.B 一个小球从足够高的地方由静止下落,那么:

(1)小球在前一秒内、前两秒内和前三秒内下落的高度之比是                ;

(2)小球在第一秒内、第二秒内和第三秒内下落的高度之比是                ;

(3)小球在前一米内、前两米内和前三米内经过的时间之比是                 ;

(4)小球在第一米内、第二米内和第三米内经过的时间之比是                 。

【每日一重点题目】

10.B 一个质点做匀变速直线运动,依次经过A、B、C三点,物体在AB段和BC段运动的时间都是T,AB段和BC段的长度分别是s1和s2,求物体的加速度和经过B点的速度。

 

专题:

追及、相遇与避碰问题

【5分钟核心要点背写】

【20分钟限时训练】

1.B 火车甲以v1前进,火车乙以v2(大于v1)从后方高速冲来,当乙车车头距离甲车车尾距离为d时,两车司机同时发现险情,于是甲车立即开始以大小为a1的加速度加速,乙车也同时开始减速,为了保证两车的安全,乙车减速时的加速度a2得是多大?

2B A、B两车在同一平直公路上同方向运动,B车在前,A车在后,当A车刚经过一路口时它们相距x0=7m,此时A车以vA=4m/s的速度匀速运动,B车以速度vB=10m/s,加速度a=2m/s2开始减速运动,求:

(1)此后B车停止运动之前两车相距最远是多少米?

(2)A车追上B车时已经驶出路口多少米?

【课后作业】

3                                              4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5                                                     

【每日一重点题目】

 

 

 

 

 

 

 

 

 

 

 

 

 

 

专题:

三力平衡问题

【复习目标】

1.知处理三力静态平衡和三力动态平衡的几种方法。

2.理解活结死结和活杆死杆的特点,并能在三力平衡问题中具体应用。

【方法问答】

问题1.处理三力静态平衡的方法?

方法特征?

解题步骤?

典型例题?

答:

.共点力作用下物体的平衡的条件是:

物体所受的合外力为零。

在解决共点力作用下物体的平衡问题时通常可以用以下几种方法:

力的合成法、力的分解法、正交分解法、相似三角形法、拉密定理(正弦定理)法、图解法。

处理三力静态平衡的重点方法:

力的合成法、正交分解法、相似三角形法、图解法。

下面通过例题来说明。

例1、如图:

一重力为G的球用长为R的不可伸长的细线挂在光滑的墙壁上,求墙的支持力和绳的拉力。

方法1:

力的合成法

步骤:

(1)选对象,受力分析

(2)找某两个力的合力(特征:

与第三个力等大反向。

(3)做平行四边形,

(4)解三角形:

正弦、余弦、正切。

 

 

 

 

 

 

 

 

方法2、正交分解法:

方法步骤:

(1)选对象,受力分析

(2)建立坐标系

(3)把力分解在坐标轴上

(4)列式:

X方向:

Fx=0;

Y方向:

Fy=0

(5)解

解:

(1)   

(2)

(1)

(2)式解得:

       

=

=

                        T=

=

方法3:

相似三角形法:

物体在三个共点力作用下处于平衡状态,

则表示这三个力的有向线段必定构成首尾相连的封闭三角形。

     解∵

     

方法4:

拉密定理(正弦定理):

物体在三个共点力作用下处于平衡状态,则表示这三个力的有向线段必定构成首尾相连的封闭

三角形,由正弦定理:

可知

    由三角形关系可知

=1500,

=1200,

=900

所以

   

问题2.处理三力动态平衡的方法?

方法特征?

解题步骤?

典型例题?

答:

方法1.动态矢量三角形:

已知合力和一分力方向时可用。

例2.一个重力G的匀质球放在光滑斜面上,斜面倾角为

,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角

缓慢增大,问:

在此过程中,挡板和斜面对球的压力大小如何变化?

 

 

方法2.正交分解法

例3.如图所示,物体A静止在倾角为30°的斜面上,现将斜面倾角由30°增大到37°,物体仍保持静止,则下列说法中正确的是        (  )

A.A对斜面的压力不变 B.A对斜面的压力增大C.A受到的摩擦力不变D.A受到的摩擦力增大

方法3.力边三角线相似。

已知边的情况时可用。

例4.如图所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球.靠放在半球上的A点,另一端绕过定滑轮后用力拉住,使小球静止.现缓慢地拉绳,在使小球使球面由A到半球的顶点B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化情况是(                          ).(A)N变大,T变小                                       (B)N变小,T变大                          

(C)N变小,T先变小后变大(D)N不变,T变小

方法4.拉密定理

例5.如图所示,物体G用两根绳子悬挂,开始时绳OA水平,现将两绳同时顺时针转过90°,且保持两绳之间的夹角α不变

,物体保持静止状态,在旋转过程中,设绳OA的拉力为F1,绳OB的拉力为F2,则(    )

(A)F1先减小后增大 (B)F1先增大后减小    

(C)F2逐渐减小(D)F2最终变为零

问题3.活结、死结如何处理?

活杆、死杆如何处理?

答:

活结:

拉力关于重力作用线对称。

通过重物的自动调节,平衡时两边拉力相等,重力作用线在两拉力的角平分线上。

思考:

右图模型中绳的右端点上下移,拉力如何变化?

死结:

两边拉力不一定相等,相当于两条绳。

活杆:

沿杆方向

死杆:

不一定沿杆方向

 

 

 

《三力平衡》基础题组1(合成法)

1.如图所示,一个半径为r、重为G的圆球,被长为r的细绳挂在竖直的光滑的墙壁上,绳与墙所成的角度为30°,则绳子的拉力T和墙壁的弹力N分别是?

 

 

 

 

2如图所示,三段不可伸长的细绳OA、OB、OC,能承受的最大拉力相同,它们共同悬挂一重物,其中OB是水平的,A端、B端固定.若逐渐增加C端所挂物体的质量,则最先断的绳(             .

(A)必定是OA(B)必定是OB  (C)必定是OC(D)可能是OB,也可能是OC

3.如图所示,半径是0.1m、重为

的均匀小球,放在光滑的竖直墙和长为1m的光滑木板(不计重力)OA之间,小板可绕轴O转动,木板和竖直墙的夹角θ=60°,求墙对球的弹力.

4.质量为m的光滑球被竖直挡板挡住,静止在倾角为θ的斜面上,如图所示,求小球压紧挡板的力的大小.

5如图

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 小学作文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1