水泥余热发电资料.docx

上传人:b****8 文档编号:8993330 上传时间:2023-02-02 格式:DOCX 页数:16 大小:402.03KB
下载 相关 举报
水泥余热发电资料.docx_第1页
第1页 / 共16页
水泥余热发电资料.docx_第2页
第2页 / 共16页
水泥余热发电资料.docx_第3页
第3页 / 共16页
水泥余热发电资料.docx_第4页
第4页 / 共16页
水泥余热发电资料.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

水泥余热发电资料.docx

《水泥余热发电资料.docx》由会员分享,可在线阅读,更多相关《水泥余热发电资料.docx(16页珍藏版)》请在冰豆网上搜索。

水泥余热发电资料.docx

水泥余热发电资料

1.水泥熟料锻烧过程中,由窑尾预热器、窑头熟料冷却机等排掉的400℃以下低温废气余热,其热量约占水泥熟料烧成总耗热量30%以上,造成的能源浪费非常严重。

水泥生产,一方面消耗大量的热能(每吨水泥熟料消耗燃料折标准煤为100~115kg),另一方面还同时消耗大量的电能(每吨水泥约消耗90~115kwh)。

如果将排掉的400℃以下低温废气余热转换为电能并回用于水泥生产,可使水泥熟料生产综合电耗降低大幅度降低。

对于水泥生产企业:

可以大幅减少向社会发电厂的购电量;可避免水泥窑废气余热直接排入大气造成的热岛现象,同时由于减少了社会发电厂可减少CO2等燃烧废物的排放而有利于保护环境。

因此,余热发电达到资源综合利用、改善环境,实现循环经济提高能源转换率的目的,符合可持续发展战略思想。

宁国水泥厂水泥窑余热发电项目总结报告

作者:

安徽宁国水泥厂   来源:

   更新日期:

2005-6-17   【字体:

小大】

一、前言

    一九九五年八月,日本国新能源产业技术综合开发机构(NEDO)与中国国家计委、国家建材局签订了水泥余热发电设备示范事业基本协定书,由日方无偿提供一套先进且成熟可靠的低温余热发电技术和设备用于中国现有水泥厂,通过科学论证和国内外专家的实地考察,日方提供的这套设备安装在宁国水泥厂4000t/d水泥生产线上,发电机装机容量为6480kw,设计年发电量为4087x10000kwh,吨熟料发电能力为3307kwh/t。

二、余热发电项目的主要技术特点:

    水泥厂余热资源的特点是:

流量大,品位低。

以宁国水泥厂4O00t/d生产线为例,PH(预热器)和、AQC(冷却机)出口废气流量和温度分别为258550Nm3/h、340℃和306600Nm3/h、238℃,其中部分废气用来烘干燃煤和原料。

    针对上述余热资源的特点,在热力系统的设计上采取以下技术措施:

1、采用减速式两点混汽式汽轮机,利用参数较低的主蒸汽和来自闪蒸器的饱和蒸汽发电;

2、设置具有专利技术的余热锅炉,能够充分利用余热资源;

3、应用热水闪蒸技术,设置一台高压用蒸器和一台低压闪蒸器,闪蒸出的饱和蒸汽混入汽轮机做功;

4、由于PH出口废气还要用于原料烘干,所以PH锅炉无省煤器,只设蒸发器和过热器,从而使出炉烟温达250℃,仍可用于原料烘干;

5、AQC锅炉设计为立式自然循环锅炉,带汽包,烟气自上而下通过锅炉。

锅炉自上而下布置过热器、蒸发器和省煤器,由于废气粉尘为熟料颗粒,粘附性不强,除尘方式采用自然沉降;另外为增大换热面积,强化换热效果,AQC锅炉的传热管设计为螺旋翅片管。

PH锅炉采用卧式强制循环锅炉,带汽包,设蒸发器和过热器,烟气在管外水平流动,受热面为蛇彩光管,设置机械振打装置来解决废气的粉尘附着问题。

    再者,整个余热发电系统采用先进的DCS集散控制系统,系统的操作简便可靠,并设有完善的报警和保护程序,使整个发电工艺系统能够长期稳定运行。

    上述关键技术的解决,为保证系统设计的可靠性、合理性起到重要作用。

较好地解决了制约我国纯低温水泥余热发电技术水平提高的瓶颈问题,以上技术在宁国水泥厂余热发电系统成功应用,在国内处于领先水平,并且达到国际先进水平。

三、项目的建成和运转实绩:

    项目于一九九六年十月十八日破土动工,一九九八年一月十四日实现两台锅炉通汽煮炉,随后顺利完成了蒸汽吹管,汽轮机冲动和升速,汽轮机保护动作实验等一系列工作,同年二月八日发电机组并网发电一次成功。

    自一九九八年三月开始实质性运转至二OO一年底,从统计数据表明,平均吨熟料发电量已达35.35kwh/t,累积发电量已达18677万千瓦时,实现了系统安全、稳定、高效运行,实现投产当年达产达标的可喜成绩。

在项目的生产管理上,充分吸收海螺集团多年来生产管理的先进经验,组织技术管理人员及时编写了一系列规章制度和安全操作规程,使余热发电系统的生产管理迅速走向科学化、制度化、规范化,由于管理科学、操作水平显著,使系统产能发挥到设计能力的110%,为该项目的应用推广打下了坚实的基础。

四、项目的经济效益和社会效益:

    水泥余热发电项目的建成并网发电,标志着中日两国在能源环境国际合作中结出丰硕成果,它不仅在全国起着示范作用,同时也给海螺集团创造了巨大的经济效益和深远的社会效益,成为海螺集团新的、稳定的经济增长点。

1、经济效益:

    自发电机组正式并网以来,截止到二OO一年十二月三十一日,发电机输出有功功率累计为18677万千瓦时,按本地区现行综合电价0.50元/kwh计算,创产值9338万元。

2、社会效益:

    水泥余热发电项目完全利用水泥生产过程中产生的废气余热作为热源,整个工艺过程不烧一克煤,对环境不造成污染。

    从能源利用率的角度来讲,水泥生产过程中消耗的能源有效利用率仅为60%,其余40%的能量随废气排放到大气中,余热发电建成后,可将排放掉的38%的废气余热进行回收,使工厂的能源利用率提高到95%以上,为工厂的可持续发展创造了有利条件。

    从环境保护角度来讲,减少了二氧化碳的排放量。

众所周知火力发电是燃煤发电,在电力生产过程中要产生大量的二氧化碳,按发电机组截止到二00一年底累计发电量18677万千瓦时来计算,共减少二氧化碳的排放量总计为140885吨,这对减少温室效应、保护生态环境起着积极的促进作用。

五、该项目在海螺集团推广应用的前景:

    通过水泥余热发电项目在我厂的成功应用,充分说明新型干法水泥窑配套余热发电装置在技术上是完全可行的,它充分利用了水泥生产过程中产生的大量废气余热进行动力回收,每吨熟料可回收30~40kwh的电能,并且该系统能够长期稳定运行,相对水泥窑的运转率可达95%左右,发电成本非常低,相对外购电价可节约大量的购电费用。

所以该项技术的应用,既可降低水泥的生产成本,提高企业的经济效益,又可以为国家节约大量的电能,减少环境污染,具有广阔的推广应用前景。

    海螺集团作为中国建材行业的领头羊,拥有多条日产5000t/d干法水泥生产线,2001年全集团水泥主业产销量首次跨过1000万吨大关,根据集团“十五”规划目标和“双跨”目标,在“十五”末,力争形成4000万吨水泥熟料生产能力、46万吨化学建材产销能力;目前集团拥有在运行和即将扩建多条4000t/d以上的水泥生产线,并积累了4000t/d水泥余热发电配套装置成功应用的经验,首条余热发电示范项目运行成功后,近期在国内水泥行业进行推广尚有难度。

为将示范线尽快在国内水泥行业得到推广,减少大气有害气体排放,回收利用热能和提高企业经济效益,集团计划将水泥余热发电项目作为水泥产业新技术在全集团日产4000吨水泥生产线上进行推广应用,在报请国家计委批准后,计划在今年三月份将邀请日方专家来海螺集团就项目的实施进行可行性论证,讨论示范项目推广的具体方案。

六、普及和推广过程中存在的问题:

    水泥余热发电示范项目在我厂建成投产近四年时间了;该示范项目在我国的普及和推广工作的进展却较为缓慢,据我们了解,很多水泥生产厂家来我厂对该示范项目的证实运转状况进行实地考察后,一致认为该技术的成功应用完全符合国家的相关产业政策,是二十一世纪的新技术产业,推广应用的前景十分广阔;但从日方提供的设备报价单上了解到,该套系统设备的初投资额较大,再者,由于我国的行业分割,系统建成投产后,能否得到相关电力行业的充分支持,因而不能迅速做出投资决策。

    若该项技术在我国的普及推广应用具有实质性的进展,并很快实现产业化。

需要国家在产业政策上予以适当的扶持。

如该示范项目在我厂的成功应用,说明日本国提供的水泥余热发电技术是先进且成熟可靠的,一些关键技术在国际上具有领先水平,在实施应用过程中,一些关键设备仍需从日方进口,进口设备的关税能否有政策上的优惠;该项技术在我国水泥行业推广应用,对提高我国的能源利用水平,保护环境起到积极的促进作用,发电机组必须通过并网才能保证供电质量,但发电机组的输出电力工厂自发自用,即“并网不上网”,确保工厂的经济效益,相关电力行业是否有政策予以充分的支持。

    必须大力推进低温余热发电技术的国产化,该技术在我国进行有效的推广和应用,在保证系统运行可靠性的前提下,必须降低设备的造价,减少投资成本,最有效的手段是扩大国内分交设备范围,除汽轮机及其控制系统、锅炉汽包和集箱等关键设备外,其它设备均可考虑国内分交(包括日方设计中方制造),从而逐步实现该技术的国产化。

附:

余热发电系统九八年——零一年运行报告

一、运行业绩:

    余热发电系统于一九九八年三月一次并网发电成功。

正式投产后系统运行持续高效稳定,运行四年来,随着操作人员技术水平的不断提高,以及同窑操作员的协调性越来越好,锅炉和发电机组运行平稳,相对于窑的运转率逐步提高。

发电机的出力得到充分发挥,从九九年发电量4108万千瓦时到2001年总发电量的5294万千瓦时,年增加发电量1188万千瓦时,提升幅度达29%,设备运转率、运转时间、相对窑运转率、吨熟料发电量这几项经济技术指标都有不同程度的提高和增加,请参见下倒图表:

二、运行分析:

1、从系统四年来运行业绩中可以看出,余热发电系统已经实现了持续、稳定、安全、高效运行,尤其一九九八年,克服了系统设备运转初期的磨合以及窑系统工况的不稳定所带来的困难,九八年从三月初的试发电至年底,全年共发电4106万千瓦时,取得了良好的开端。

2、二000年、二OO一年这两年,发电系统运行业绩十分突出,吨熟料发电量和年发电量两项技术指标都达到了设计水平的110%和128%,说明系统操作人员已经掌握了驾驭这套系统的能力,部门技术管理人员在优化系统工艺参数、加强与窑系统的协调和合作上作了一些努力和工作,使发电机组基本上以满负荷高效运行。

3、在对发电系统设备故障的处理和对系统出现异常状况的应急措施方面,发电部门已经积累了许多宝贵的经验和教训,获得了许多有益的尝试和进步,如二O0一年发电系统出现的PH锅炉循环水泵机械密封件频繁泄漏,导致发电机组被迫单炉运转,发电量下挫的故障,部门领导、技术人员迅速及时进行故障原因分析;加强了锅炉水质管理,同时对进口备件机械密封件用国内同类产品进行替代,取得了很好的效果,这也给发电部门在备品备件管理上如何进一步提高国产化率提供了很好的尝试和范例。

三、运行中存在的问题:

l、九九年全年发电量较低,相比九八年只多发电2.2万千瓦时。

运行时间却多1252小时,说明发电系统的运转率虽然提高了,但发电机的有功出力较低,原因一是九九年三月份水泥系统的篦冷机经过改造后,篦冷机用风量减少,AQC炉废气流量减少,AQC炉出力不足;原因二是AQC炉废气旁路挡板其中一阀板脱落,且发现不及时,造成系统漏风严重,同样造成AQC炉出力不足,后经过认真分析,在系统停机处理和水泥工艺做出适当调整后,余热发电系统状况便日趋正常。

2、二OO一年六月发电系统AQC锅炉出现了过热器传热管受高速含尘烟气的冲刷与磨损,导致穿孔、破管的事故发生,事故发生后,采取了积极的处理措施,从根本上消除了系统配套设计中存在的不足,即传热管的防磨损措施考虑的不完善,同时技术人员和操作人员对事故预见性判断能力仍需进一步提高。

表一

年份

总发电量(万kWh)

运转时间(h)

相对窑运转率(%)

吨熟料发电量(kWh/t)

1998年

4106.54

5514.1

93.21

37.10

1999年

4108.74

6766.3

94.35

31.43

2000年

5167.71

7585.9

95.55

36.42

2001年

5294.37

7798.8

96.77

36.48

第一代余热发电技术

第一代技术应用

第二代系统特点

由于大多数(80%)以上已投运的水泥线窑头取热在380-400℃,甚至更高,针对窑尾一级筒出口温度低于330℃的系统,采用将窑尾余热锅炉产生的低温过热蒸汽(一般在300℃以下)送入窑头余热锅炉,在窑头余热锅炉设置高温过热器,将混合蒸汽(来自窑头、窑尾余热锅炉的低温过热蒸汽)进一步加热到360-380℃(比原混合蒸汽提高了50-60℃),然后进入汽轮机发电。

该工艺较第一代系统提高余热发电量8-10%左右。

第三代系统特点

将窑头冷却剂余风进行梯级利用,原中部抽风口改为两个抽风口,一个为高温480-500℃,一个为中温330-380℃。

高温风将来自窑头窑尾余热锅炉的低温过热蒸汽进一步提高到430℃左右,该工艺较第一代系统提高余热发电量15-20%左右。

余热发电设计指导思想:

(1)在不影响水泥生产的前提下最大限度地利用余热。

(2)在技术方案上统一考虑回收利用水泥生产线窑头熟料冷却机及窑尾预热器的废气余热;冷却机采用中部抽风,合理设计中部抽风口,并设余风再循环。

(3)在生产可靠的前提下,提倡技术先进。

要尽可能采用先进的工艺(热力系统)技术方案,以降低操作成本和改造基建的投入。

(4)以生产可靠为前提,采用成熟、可靠的工艺和装备,克服同类型、同规模项目中暴露出的问题。

(5)余热电站主、辅机的过程控制采用集散型计算机控制系统。

南京凯盛开能环保能源有限公司热力系统优化设计原则

(1)过热蒸汽产量最大化。

对于中低温余热利用,关键在于工艺和设备允许范围内充分利用余热,并使设备的效率最高,使余热发电最大化。

对于低参数汽轮发电机组而言,影响其发电量的是三个主要参数:

过热蒸汽流量、压力和温度,其中流量对发电量起决定性影响,压力和温度对单位质量蒸汽的焓和汽轮机的内效率(热能转化为机械能的效率)有影响,但其影响远小于流量的影响。

一般来讲,窑尾废气余热占可利用余热的60%以上,所以在考虑整个生产线的过热蒸汽流量时,首先考虑使窑尾的过热蒸汽产量最大,窑头配合窑尾。

(2)高过热蒸汽温度。

过热蒸汽温度高除可以通过提高过热蒸汽焓值和汽轮机内效率来提高发电量外,更重要的是提高汽轮机运行的安全性。

受传热效率和锅炉制造成本的影响,必须保持过热蒸汽同烟气之间有适当的温差,该温差在20℃以上比较合理。

(3)合适的汽包工作压力。

考虑在换热过程中,蒸发受热面内汽水混合物的温度不变,而烟气同汽水混合物之间传热温差窄点在20℃以上受热面的布置才合理,汽水混合物的温度直接受压力的影响,所以选择合理的压力水平为受热面布置创造条件,以防止锅炉造价过高。

(4)充分降低废气温度。

受窑尾废气要用于烘干生料的工艺限制,一般窑尾废气温度只能降至225℃左右;窑头余风可以充分降低,但降低过多则造成传热温差小使得换热面积布置过多,使锅炉造价提高,同时吸收过多的低品质热量也无法有效提高发电量,所以窑头余风的降低以满足为窑头和窑尾余热锅炉提供足量的汽包给水即可。

根据热量分配和能量平衡计算,窑头余风降至96~98℃即可满足要求。

(5)合理布置受热面。

在布置受热面时要考虑窑尾、窑头的烟气温度特性以及汽轮发电机的特性进行综合考虑,同时考虑选用合理温差以降低锅炉造价。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学研究 > 教学反思汇报

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1