三年级数学奥数讲座数阵图一.docx

上传人:b****7 文档编号:8984197 上传时间:2023-02-02 格式:DOCX 页数:7 大小:126.22KB
下载 相关 举报
三年级数学奥数讲座数阵图一.docx_第1页
第1页 / 共7页
三年级数学奥数讲座数阵图一.docx_第2页
第2页 / 共7页
三年级数学奥数讲座数阵图一.docx_第3页
第3页 / 共7页
三年级数学奥数讲座数阵图一.docx_第4页
第4页 / 共7页
三年级数学奥数讲座数阵图一.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

三年级数学奥数讲座数阵图一.docx

《三年级数学奥数讲座数阵图一.docx》由会员分享,可在线阅读,更多相关《三年级数学奥数讲座数阵图一.docx(7页珍藏版)》请在冰豆网上搜索。

三年级数学奥数讲座数阵图一.docx

三年级数学奥数讲座数阵图一

三年级数学奥数讲座数阵图

(一)

三年级数阵图

(一)

  在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

  那么,到底什么是数阵呢?

我们先观察下面两个图:

  左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

  上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不

例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

分析与解:

与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。

  以,必须先求出这个“和”。

根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于

  [(1+2+3+4+5)+5]÷2=10。

  因此,两条直线上另两个数(非“重叠数”)的和等于10-5=5。

在剩下的四个数1,2,3,4中,只有1+4=2+3=5。

故有右上图的填法。

例3把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等。

分析与解:

例1是知道每条直线上的三数之和,不知道重叠数;例2是知道重叠数,不知道两条直线上的三个数之和;本例是这两样什么都不知道。

但由例1、例2的分析知道,

  (1+2+3+4+5)+重叠数

  =每条直线上三数之和×2,

  所以,每条直线上三数之和等于(15+重叠数)÷2。

  因为每条直线上的三数之和是整数,所以重叠数只可能是1,3或5。

  若“重叠数”=1,则两条直线上三数之和为

  (15+1)÷2=8。

  填法见左下图;

  若“重叠数”=3,则两条直线上三数之和为

  (15+3)÷2=9。

  填法见下中图;

  若“重叠数”=5,则两条直线上三数之和为

  (15+5)÷2=10。

  填法见右下图。

  由以上几例看出,求出重叠数是解决数阵问题的关键。

为了进一步学会掌握这种解题方法,我们再看两例。

例4将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。

 

分析与解:

与例1类似,知道每条边上的三数之和,但不知道重叠数。

因为有3条边,所以中间的重叠数重叠了两次。

于是得到

  (1+2+…+7)+重叠数×2=10×3。

  由此得出重叠数为

  [10×3-(1+2+…+7)]÷2=1。

  剩下的六个数中,两两之和等于9的有2,7;3,6;4,5。

可得右上图的填法。

  如果把例4中“每条边上的三个数之和都等于10”改为“每条边上的三个数之和都相等”,其他不变,那么仿照例3,重叠数可能等于几?

怎样填?

例5将10~20填入左下图的○内,其中15已填好,使得每条边上的三个数字之和都相等。

解:

与例2类似,中间○内的15是重叠数,并且重叠了四次,所以每条边上的三个数字之和等于

  [(10+11+…+20)+15×4]÷5=45。

  剩下的十个数中,两两之和等于(45-15=)30的有10,20;11,19;12,18;13,17;14,16。

于是得到右上图的填法。

例1~5都具有中心数是重叠数,并且每边的数字之和都相等的性质,这样的数阵图称为辐射型。

例4的图中有三条边,每边有三个数,称为辐射型3—3图;例5有五条边每边有三个数,称为辐射型5—3图。

  一般地,有m条边,每边有n个数的形如下图的图形称为辐射型m-n图。

  辐射型数阵图只有一个重叠数,重叠次数是“直线条数”-1,即m-1。

对于辐射型数阵图,有

  已知各数之和+重叠数×重叠次数

  =直线上各数之和×直线条数。

  由此得到:

(1)若已知每条直线上各数之和,则重叠数等于

  (直线上各数之和×直线条数-已知各数之和)÷重叠次数。

  如例1、例4。

(2)若已知重叠数,则直线上各数之和等于(已知各数之和+重叠数×重叠次数)÷直线条数。

如例2、例5。

(3)若重叠数与每条直线上的各数之和都不知道,则要从重叠数的可能取值分析讨论,如例3。

 

练习

  1.将1~7这七个数分别填入左下图中的○里,使每条直线上的三个数之和都等于12。

  如果每条直线上的三个数之和等于10,那么又该如何填?

  2.将1~9这九个数分别填入右上图中的○里(其中9已填好),使每条直线上的三个数之和都相等。

  如果中心数是5,那么又该如何填?

  3.将1~9这九个数分别填入右图的小方格里,使横行和竖列上五个数之和相等。

(至少找出两种本质上不同的填法)

  4.将3~9这七个数分别填入左下图的○里,使每条直线上的三个数之和等于20。

  5.将1~11这十一个数分别填入右上图的○里,使每条直线上的三个数之和相等,并且尽可能大。

  6.将1~7这七个数分别填入下图的○里,使得每条直线上三个数之和与每个圆圈上的三个数之和都相等。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 人力资源管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1