即:
船的外角F在拱形内
此货船能顺利通过拱桥。
解题方法三:
判断船宽与拱高出水面2米处弦长,若船宽小于弦长,则能通过,否则不能通过,解法略。
考点点评:
本题考查的是垂径定理的应用;勾股定理,根据题意画出图形,利用数形结合求解是解答此题的关键.
6、已知:
如图,∠AOB=90°,C、D是
的三等分点,AB分别交OC、OD于点E、F.求证:
AE=BF=CD
证明方法一:
C、D是弧AB的三等分点,
则∠AOC=∠COD=∠DOB=30°。
AC=CD=DB(在同圆中相等的弧所对的弦也相等);
AO=OB,∠AOB=90°
则∠OAB=∠OBA=45°。
OA=OC,∠AOC=30°则∠OAC=75°。
∠OAB=45°则∠BAC=30°。
∠ACO=∠CAO=75°则∠AEC=75°,
则△ACE是等腰三角形。
AC=AE,AC=CD
则AE=CD。
同理可证BF=CD
所以AE=BF=CD。
证明方法二:
∵O为
的中点,∴OA=OB,∴点O为
所在圆的圆心,
连接AC、BD,则有AC=CD=BD,如上图:
∵∠AOC=∠COD,OA=OC=OD,
∴△ACO≌△DCO.∴∠ACO=∠OCD.
∵∠OEF=∠OAE+∠AOE=45°+30°=75°
∠OCD=
=75°,
∴∠OEF=∠OCD,∴CD∥AB,
∴∠AEC=∠OCD,∴∠ACO=∠AEC.故AC=AE,
同理,BF=BD.
又∵AC=CD=BD,∴AE=CD=BF.
考点点评:
本题主要考查了全等三角形的判定和性质;等腰三角形的性质;圆周角定理、圆心角、弧、弦的关系等知识的综合应用能力。
7、如右图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.
(1)若∠E=∠F时,求证:
∠ADC=∠ABC;
(2)若∠E=∠F=42°时,求∠A的度数;
(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.
解:
(1)∠E=∠F,
∵∠DCE=∠BCF,
∴∠ADC=∠E+∠DCE,∠ABC=∠F+∠BCF,
∴∠ADC=∠ABC;
(2)由
(1)知∠ADC=∠ABC,
∵∠EDC=∠ABC,
∴∠EDC=∠ADC,
∴∠ADC=90°,
∴∠A=90°﹣42°=48°;
(3)连结EF,如图,
∵四边形ABCD为圆的内接四边形,
∴∠ECD=∠A,
∵∠ECD=∠1+∠2,
∴∠A=∠1+∠2,
∵∠A+∠1+∠2+∠E+∠F=180°,
∴2∠A+α+β=180°,
∴∠A=90°﹣
.
考点1:
圆
圆,圆的有关性质与圆的有关计算是近几年各地中考命题的重点内容。
题型以填空题,选择题和解答题为主,也有以阅读理解,条件开放,结论开放探索题作为新的题型,分值一般是6-12分,难易度为中,考察内容:
①圆的有关性质的应用。
垂径定理是重点。
②直线和圆,圆和圆的位置关系的判定及应用。
③弧长,扇形面积,圆柱,圆锥的侧面积和全面积的计算④圆与相似三角形,三角函数的综合运用以及有关的开放题,探索题。
突破方法:
①熟练掌握圆的有关行政,掌握求线段,角的方法,理解概念之间的相互联系和知识之间的相互转化。
②理解直线和原的三种位置关系,掌握切线的性质和判定的歌,会根据条件解决圆中的动态问题。
③掌握有两圆半径的和或差与圆心距的大小关系来盘底的那个两个圆的位置关系,对中考试题中常出现的阅读理解题,探索题,要灵活运用圆的有关性质,进行合理推理与计算。
④掌握弧长,扇形面积计算公式。
⑤理解圆柱,圆锥的侧面展开图⑥对组合图形的计算要灵活运用计算方法解题。
8、在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:
若在射线CP上存在一点P′,满足CP+CP′=2r,则称点P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.
(1)当⊙O的半径为1时,
①分别判断点M(2,1),N(
,0),T(1,
)关于⊙O的反称点是否存在?
若存在,求其坐标;
②点P在直线y=-x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;
(2)⊙C的圆心在x轴上,半径为1,直线y=-
x+2
与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.
解:
(1)当⊙O的半径为1时.
①点M(2,1)关于⊙O的反称点不存在;
N(
,0)关于⊙O的反称点存在
反称点N′(
,0);
T(1,
)关于⊙O的反称点存在
反称点T′(0,0);
②∵OP≤2r=2,OP2≤4,设P(x,-x+2),
∴OP2=x2+(-x+2)2=2x2-4x+4≤4,
∴2x2-4x≤0,
x(x-2)≤0,
∴0≤x≤2.
当x=2时,P(2,0),P′(0,0)不符合题意;
当x=0时,P(0,2),P′(0,0)不符合题意;
∴0<x<2;
(2)∵直线y=-
x+2
与x轴、y轴分别交于点A,B,
∴A(6,0),B(0,2
),
∴
=
,
∴∠OBA=60°,∠OAB=30°.
设C(x,0).
①当C在OA上时,作CH⊥AB于H,则CH≤CP≤2r=2,
所以AC≤2,
C点横坐标x≥2(当x=2时,C点坐标(2,0),H点的反称点H′(2,0)在圆的内部);
②当C在A点右侧时,C到线段AB的距离为AC长,AC最大值为2,
所以C点横坐标x≤8.
综上所述,圆心C的横坐标的取值范围是2≤x≤8.
考点1:
三角形
(1)三角形的概念:
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
组成三角形的线段叫做三角形的边.
相邻两边的公共端点叫做三角形的顶点.
相邻两边组成的角叫做三角形的内角,简称三角形的角.
(2)按边的相等关系分类:
不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).
(3)三角形的主要线段:
角平分线、中线、高.
(4)三角形具有稳定性.
考点2:
圆
圆,圆的有关性质与圆的有关计算是近几年各地中考命题的重点内容。
题型以填空题,选择题和解答题为主,也有以阅读理解,条件开放,结论开放探索题作为新的题型,分值一般是6-12分,难易度为中,考察内容:
①圆的有关性质的应用。
垂径定理是重点。
②直线和圆,圆和圆的位置关系的判定及应用。
③弧长,扇形面积,圆柱,圆锥的侧面积和全面积的计算④圆与相似三角形,三角函数的综合运用以及有关的开放题,探索题。
突破方法:
①熟练掌握圆的有关行政,掌握求线段,角的方法,理解概念之间的相互联系和知识之间的相互转化。
②理解直线和原的三种位置关系,掌握切线的性质和判定的歌,会根据条件解决圆中的动态问题。
③掌握有两圆半径的和或差与圆心距的大小关系来盘底的那个两个圆的位置关系,对中考试题中常出现的阅读理解题,探索题,要灵活运用圆的有关性质,进行合理推理与计算。
④掌握弧长,扇形面积计算公式。
⑤理解圆柱,圆锥的侧面展开图⑥对组合图形的计算要灵活运用计算方法解题。
考点3:
图形的相似
形状相同,大小不同的两个图形相似
9、如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.
(1)求对学校A的噪声影响最大时卡车P与学校A的距离;
(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.
解:
(1)过点A作AD⊥ON于点D,
∵∠NOM=30°,AO=80m,∴AD=40m,
即对学校A的噪声影响最大时卡车P与学校A的距离为40米;
(2)由图可知:
以50m为半径画圆,分别交ON于B,C两点,
AD⊥BC,BD=CD=
BC,OA=800m,
∵在Rt△AOD中,∠AOB=30°,
∴AD=
OA=
×800=400m,
在Rt△ABD中,AB=50,AD=40,由勾股定理得:
BD=
=
=30m,
故BC=2×30=60米,即重型运输卡车在经过BD时对学校产生影响.
∵重型运输卡车的速度为18千米/小时,即
=30米/分钟,
∴重型运输卡车经过BD时需要60÷30=2(分钟).
答:
卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为2分钟.
点评:
本题考查的是点与圆的位置关系,根据拖拉机行驶的方向,速度,以及它在以A为圆心,50米为半径的圆内行驶的BD的弦长,求出对小学产生噪音的时间.
10、已知:
△ABC内接于⊙O,过点A作直线EF.
(1)如图1,若AB为⊙O的直径,要使EF成为⊙O的切线,还需添加的一个条件是
(要求写出三种情况);①∠CAE=∠B、②AB⊥EF、③∠BAE=∠C,并任意证明其中一种情况。
(2)如图2,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?
试证明你的判断。
证明:
(1)∵AB为⊙O直径,∴∠ACB=90°.
∴∠BAC+∠ABC=90°.
若∠CAE=∠ABC.
∴∠BAC+∠CAE=90°,
即∠BAE=90°,OA⊥AE.
∴EF为⊙O的切线.
(2)EF还是⊙O的切线.
证明:
连接AO并延长交⊙O于点D,连接CD,如图,
∴∠ADC=∠ABC.
∵AD为⊙O的直径,
∴∠DAC+∠ADC=90°.
∵∠CAE=∠ABC=∠ADC,
∴∠DAC+∠CAE=90°.
∴∠DAE=90°,
即OA⊥EF
所以EF为⊙O的切线.
11、如图所示,P为⊙O外一点,PA、PB为⊙O的切线,A、B为切点,AC为⊙O的直径,PO交⊙O于点E.
(1)试判断∠APB与∠BAC的数量关系,并说明理由。
(2)若⊙O的半径为4,P是⊙O外一动点,是否存在点P,使四边形PAOB为正方形?
若存在,请求出PO的长,并判断点P的个数及其满足的条件;若不存在,请说明理由.
解:
(1)连接BA,如图1,∵PA、PB为⊙O的切线,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠APB+∠AOB=180°,而∠AOB+∠BOC=180°,∴∠BOC=∠APB,∵∠BOC=∠OAB+∠OBA,而OA=OB,∴∠OAB=∠OBA,∴∠BOC=2∠BAC,∠APB=2∠BAC。
(2)由PA、PB为⊙O的切线得∠OAP=∠OBP=90°,所以当OA⊥OB时,四边形PAOB为矩形,加上OA=OB,于是可判断四边形PAOB为正方形,根据正方形的性质得OP=
OA=4
;由此得到这样的点P有无数个,当点P在以O点为圆心,4
为半径的圆上时,四边形PAOB为正方形。
考点点评:
本题考查了切线的性质;勾股定理;圆的切线垂直于经过切点的半径.也考查了正方形的判定.
12、如图1、2、3、…、n,M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDEFG…的边AB、BC上的点,且BM=CN,连接OM、ON.
(1)求图1中∠MON的度数;
(2)图2中∠MON的度数是______,图3中∠MON的度数是______;
(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案)。
解:
分别连接OB、OC,
(1)∵AB=AC,
∴∠ABC=∠ACB,
∵OC=OB,O是外接圆的圆心,
∴CO平分∠ACB
∴∠OBC=∠OCB=30°,
∴∠OBM=∠OCN=30°,
∵BM=CN,OC=OB,
∴△OMB≌△ONC,
∴∠BOM=∠NOC,
∵∠BAC=60°,
∴∠BOC=120°;
∴∠MON=∠BOC=120°;
(2)同
(1)可得∠MON的度数是90°,图3中∠MON的度数是72°;
(3)由
(1)可知,∠MON=
=120°;在
(2)中,∠MON=
=90°;在(3)中∠MON=
=72°…,
故当n时,∠MON=
13、如图所示,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF。
(1)求证:
OF∥BC;
(2)求证:
△AFO≌△CEB;?
(3)若EB=5cm,CD=10
cm,设OE=Xcm,求X的值及阴影部分的面积。
解:
(1)∵AB为⊙O的直径,
∴AC⊥BC,
又∵OF⊥AC,
∴OF∥BC;
(2)∵AB⊥CD,
∴
=
,
∴∠CAB=∠BCD,
又∵∠AFO=∠CEB=90°,OF=BE,
∴△AFO≌△CEB(AAS);
主要考查扇形面积的计算,平行线的判定,三角形全等的判定,圆心角,圆周角,弧和弦等考点的理解。
(3)∵AB⊥CD,
∴CE=
CD=5
,
在Rt△OCE中,OC=OB=X+5,
根据勾股定理可得:
(X+5)2=(5
)2+X2,
解得:
x=5
∴tan∠COE=
=
,
∴∠COE=60°,
∴∠COD=120°,
∴扇形COD的面积是:
=
,
△COD的面积是:
CD×OE=
×10
×5=25
,
∴阴影部分的面积是:
(
-
)(cm2)。
14、如图所示,一个圆锥的高为3
cm,侧面展开图是半圆.
求:
(1)圆锥的母线长与底面圆的半径之比;
(2)∠BAC的度数;
(3)圆锥的侧面积(结果保留π).
分析
(1)利用底面周长=展开图的半圆周长计算;
(2)利用特殊角的三角函数圆锥高与母线的夹角为30°,则锥角为60度;
(3)利用特殊角的三角函数求出半径,再求侧面积.
解:
(1)设此圆锥的底面半径为r.
∵2πr=
=π?
AC,
∴
=2,
∴圆锥的母线长与底面半径之比为2:
1;
(2)∵
=2,
∴圆锥高与母线的夹角为30°,则锥角为60度;
(3)∵h=3
cm,
∴r=3cm,AC=6cm.
圆锥的侧面积=π/2AC2=18πcm2.
点评:
一题的关键是利用底面周长=展开图的半圆周长可求.2、3题主要是利用特殊角的三角函数求值.
15、如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.
(1)、求证:
∠PCA=∠B
(2)、已知∠P=40°,点Q在优弧
上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长。
试题解析:
(1)连接OC,
∵PC是⊙O的切线,
∴∠PCO=90°,
∴∠1+∠PCA=90°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠2+∠B=90°,
∵OC=OA,
∴∠1=∠2,∴∠PCA=∠B;
(2)∵∠P=40°,
∴∠AOC=50°,
∵AB=12,∴AO=6,
当∠AOQ=∠AOC=50°时,
△ABQ与△ABC的面积相等,
∴点Q所经过的弧长=
=
,
当∠BOQ=∠AOC=50°时,即∠AOQ=130°时,
△ABQ与△ABC的面积相等,
∴点Q所经过的弧长=
=
,
当∠BOQ=50°时,即∠AOQ=230°时,
△ABQ与△ABC的面积相等,
∴点Q所经过的弧长=
=
,
∴当△ABQ与△ABC的面积相等时,
动点Q所经过的弧长为
或
或
.
考点:
1.切线的性质;2.弧长的计算
16、世界杯决赛分成8个小组,每小组4个队,小组进行单循环(每个队都与该小组的其他队比赛一场)比赛,胜一场得3分,平一场得1分,负一场得0分.积分最高的2个队进入16强,请问:
(1)求每小组共比赛多少场?
(2)在小组比赛中,现有一队得到6分,该队出线是一个确定事件还是不确定事件?
解:
(1)
=6(场)
(2)因为总共有6场比赛,每场比赛最多可得3分,则6场比赛最多共有3×6=18分,现有一队得6分,还剩下12分,则还有可能有2个队同时得6分,故不能确保该队出线,因此该队出线是一个不确定事件.
考点名称:
随机事件
随机事件:
事件可分为确定事件和不确定事件,不确定事件又称为随机事件。
在一定条件下,可能发生也可能不发生的事件。
事件和概率的表示方法:
一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
事件的概率:
随机事件A的概率为0
随机事件特点: