界面化学复习.docx

上传人:b****8 文档编号:8905694 上传时间:2023-02-02 格式:DOCX 页数:30 大小:40.65KB
下载 相关 举报
界面化学复习.docx_第1页
第1页 / 共30页
界面化学复习.docx_第2页
第2页 / 共30页
界面化学复习.docx_第3页
第3页 / 共30页
界面化学复习.docx_第4页
第4页 / 共30页
界面化学复习.docx_第5页
第5页 / 共30页
点击查看更多>>
下载资源
资源描述

界面化学复习.docx

《界面化学复习.docx》由会员分享,可在线阅读,更多相关《界面化学复习.docx(30页珍藏版)》请在冰豆网上搜索。

界面化学复习.docx

界面化学复习

1.什么是气凝胶?

有哪些主要特点和用途?

当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。

气凝胶是一种固体物质形态,世界上密度最小的固体。

气凝胶貌似“弱不禁风”,其实非常坚固耐用。

它可以承受相当于自身质量几千倍的压力,在温度达到1200摄氏度时才会熔化。

此外它的导热性和折射率也很低,绝缘能力比最好的玻璃纤维还要强39倍。

用途:

(1)制作火星探险宇航服

(2)防弹不怕被炸

(3)过滤与催化(4)隔音材料(5)日常生活用品

2.试述凝胶形成的基本条件?

①降低溶解度,使被分散的物质从溶液中以“胶体分散状态”析出。

②析出的质点即不沉降,也不能自由行动,而是构成骨架,在整个溶液中形成连续的网状结构。

3.简述光学白度法测定去污力的过程。

将人工制备的污布放在盛有洗涤剂硬水的玻璃瓶中,瓶内还放有橡皮弹子,在机械转动下,人工污布受到擦洗。

在规定温度下洗涤一定时间后,用白度计在一定波长下测定污染棉布试片洗涤前后的光谱反射率,并与空白对照。

4.试述洗涤剂的发展趋势。

液体洗涤剂近几年的新的发展趋势:

(1)浓缩化

(2)温和化、安全化(3)专业化(4)功能化(5)生态化:

①无磷化②表面活性剂生物降解③以氧代氯

5.简述干洗的原理

干洗是在有机溶剂中进行洗涤的方法,是利用溶剂的溶解力和表面活性剂的加溶能力去除织物表面的污垢。

6.脂肪酶在洗涤剂中的主要作用是什么?

脂肪酶,人的皮脂污垢如衣领污垢中因含有甘油三脂肪酸酯而很难去除,在食品污垢中也含有甘油三脂肪酸酯类的憎水物质,脂肪酶能将这些污垢分解成甘油和脂肪酸。

7.在洗涤剂中作为柔和剂的SAA主要是什么物质?

用作柔和剂的表面活性剂主要是两性表面活性剂

8.用防水剂处理过的纤维为什么能防水?

织物防水原理:

将纤维织物用防水剂进行处理,可使处理后的纤维不表面变为疏水性,防水织物由于表面的疏水性使织物与水之间的接触角θ>90°,在纤维与纤维间形成的“毛细管”中的液面成凸液面,凸液面的表面张力的合力产生的附加压力△P的方向指向液体内部因此有阻止水通过毛细管渗透下来的作用。

9.请举出几个润湿剂的应用实例。

(1)润温剂在农药中的应用。

加入润湿剂后,药液在蜡质层上的润湿状况得到改善甚至可以在其上铺展。

(2)润湿剂在原油开采中的应用。

溶有表面活性剂的水,称之为活性水,活性水中添加的表面活性剂主要是润湿剂。

它具有较强的降低油—水界面张力和使润湿反转的能力

(3)润湿剂在原油集输中的应用。

在稠油开采和输送中,加入含有润湿剂的水溶液,即能在油管、抽油杆和输油管道的内表面形成—层亲水表面,从而使器

壁对稠油的流动阻力降低,以利于稠油的开采和辅送。

这种含润湿剂的水溶液即为润湿降阻

10.十八胺既防水又防油的道理。

由于十八胺的单分子膜其临界表面张力γc很低,使得水和油不能在其单分子膜上铺展

11.说明润湿剂在原油输送中的润湿降阻作用。

在稠油开采和输送中,加入含有润湿剂的水溶液,即能在油管、抽油杆和输油管道的内表面形成—层亲水表面,从而使器壁对稠油的流动阻力降低,以利于稠油的开采和辅送。

这种含润湿剂的水溶液即为润湿降阻剂。

12.纯水为什么不能形成稳定的泡沫?

因为纯水产生的泡沫寿命大约0.5秒之内,瞬间存在,即消泡速度高于起泡速度,所以纯水中的只能出现单泡,因此不可能得到稳定的泡沫。

13.起泡剂与稳泡剂有什么不同?

起泡与稳泡在概念上有何不同?

起泡性能好的物质称为起泡剂。

具有低表面张力的阴离子表面活性剂一般都具有良好的起泡性,但生成的泡沫不一定有持久性。

稳泡剂:

它们能在泡沫的液膜表面形成高粘度高弹性的表面膜,因此有很好的稳泡作用,

14.请举例说明泡沫有何用处和害处。

在日常生活中,含有较多泡沫的洗脸或洗澡产品比较容易去除皮脂。

另外用泡沫洗车有一定的润滑作用,可以有效的抵抗在洗车过车中灰尘把车划伤,但泡沫的化学成分对车漆又有刺激性,放过来还是伤车漆的。

15.简述固体颗粒消泡机理。

说明应用的场合和常用的物质。

固体颗粒作为消泡剂首要条件是固体颗粒必须是疏水性的。

当疏水二氧化硅颗粒加入泡沫体系后,其表面与起泡剂和稳泡剂疏水链吸附,而亲水基伸入液膜的,这样二氧化硅的表面由原来的疏水表面变为了亲水表面,于是亲水的二氧化硅颗粒带着这些表面活性剂一起从液膜的表面进入了液膜的水相中。

使液膜表面的表面活性剂浓度减低,从而全面的增加了泡沫的不稳定性因素,大幅地缩短了泡沫的“寿命”而导致泡沫的破坏。

16.简述泡沫灭火剂的灭火机理。

泡沫灭火剂的主要作用是起泡和灭火。

由于泡沫中含有一定量的水分可起冷却作用且在燃料的表面上覆盖一层泡沫层而使可燃气体与氧隔绝而起到灭火的目的。

17.简述金银粒子浮选法分离的基本原理。

它是利用泡沫来分离溶液中电解质离子的一种方法。

以离子型表面活性剂作为起泡剂,它会以疏水的碳氢链伸入气泡的气体中而以其离子头伸入水相的吸附状态吸附于气—液界面上,使气泡的表面带有电荷,它与溶液中的反离子间存在静电引力,而且对不同的反离子静电引力也有差异。

所以可以把溶液中的某些反离子吸附于泡沫上,然后随气泡升至液面成为泡沫而分离开。

因为阳离子表面活性剂对[AuCl4]—阴离子的吸引力很强,因此利用这个方法可以使金和银两种贵金属得到很好的分离。

18.有一乳状液滴入蒸馏水,立即散开,可能为何种乳状液?

O/W型

19.固体粉末(如CaCO3和松香等)为什么可以作为乳化剂?

CaCO3和松香可作为什么类型的乳状液的乳化剂?

当固体粉末同时被水和油润湿时,可以处于两相界面上时,才能起到乳化剂的作用。

主要是形成了坚固的界面膜,保护了分散相的液滴,使其稳定。

亲油性强的粉末乳化剂,应得外相为油的乳状液。

反之亦然。

CaCO3——O/W型乳状液

松香——W/O型乳状液

20.原油是什么乳状液?

乳化剂大致什么物质?

破乳常用什么方法?

采出的原油是W/O型乳状液,必须破乳脱水后才能进炼油厂加工。

(1)合成表面活性剂

(2)高聚物乳化剂

(3)天然产物

(4)固体粉末

具有良好的表面活性,能降低表面张力,在乳状液外相中有较好的溶解能力;常用的破乳方法有:

温度变化

添加无机盐

电破乳

表面活性剂破乳

21.原油破乳剂有何特点?

目前常用的物质是什么?

(1)能将原来的乳化剂从液滴界面上顶替出来,而自身又不能形成牢固的保护膜;

(2)能使原来作为乳化剂的固体粉末(如沥青质粒子或微晶石蜡)完全被原油或原油中的水润湿,使固体粉末脱离界面进入润湿它的那一相,从而破坏了保护层;

(3)破乳的物质是一种O(油)/W(水)型乳化剂

目前常用的是聚醚型表面活数剂——聚氧乙烯—聚氧丙烯的嵌段共聚物

22.粘度、界面电荷、液滴大小如何影响乳状液的稳定性?

乳状液的粘度

外相粘度大,乳状液教稳定。

界面电荷

乳状液中的液滴带电,有排斥力,提高了乳状液的稳定性。

液滴大小及其分布

液滴小,范围窄小,愈稳定。

23.试解释江河入海口处,沉积平原形成的原因。

河是淡水,在流动过程中会携带泥沙中的部分物质形成较为稳定的胶体溶液,并随着江河水一起流动。

当江河水到达入海口时,海水中含有大量的电解质,根据DLVO理论,在胶团之间,既存在着斥力势能,又存在着吸力势能,胶体系统的相对稳定或聚沉取决于斥力势能和吸力势能的相对大小。

加入电解质后,对溶胶体系内胶体粒的引力势能影响不大,但会明显降低粒子间的斥力势能,从而降低带电溶胶的稳定性,因此泥沙在入海口沉降,形成平原。

1.在滴管内的液体为什么必须给橡胶帽加压时液体才能滴出,并呈球形?

答:

因在滴管下端的液面呈凹形,即液面的附加力是向上的,液体不易从滴管滴出。

若要使液滴从管端滴下,必须在橡胶帽加以压力,使这压力大于附加压力,此压力通过液柱而传至管下端液面而超过凹形表面的附加压力,使凹形表面变成凸形表面,最终使液滴滴下。

刚滴下的一瞬间,液滴不成球形,上端呈尖形,这时液面各部位的曲率半径都不一样,不同部位的曲面上所产生附加压力也不同,这种不平衡的压力迫使液滴自动调整成球形,使液滴具有最小的表面积以降低能量。

2.自然界中为什么气泡、小液滴都呈球形?

答:

液膜和液体表面都具有表面自由能,表面自由能越低,系统越稳定,所以为了降低表面自由能,液体表面都有自动收缩的趋势。

而球形是相同体积的物体具有表面积最小的一种形式,所以气泡和小液滴都呈球形。

3.人工降雨的原理是什么?

答:

高空中如果没有灰尘,水蒸汽可以达到相当高的过饱和程度而不致凝结成水。

因为此时高空中的水蒸汽压力虽然对平液面的水来说已是过饱和的了,但对将要形成的小水滴来说尚未饱和,因此,小水滴难形成。

若在空气中撒入凝结中心,使凝聚水滴的初始曲率半径加大,其相应的饱和蒸汽压可变小,因此蒸汽会迅速凝结成水。

4.在进行蒸馏实验时要在蒸馏烧瓶中加些碎磁片或沸石以防止暴沸,道理何在?

答:

若无碎磁片或沸石,液体内部不易形成新相(气相),因形成新相的刹那,该新气泡相的凹形表面的曲率很小,则根据开尔文公式,该微小气泡便自发消失,因此体系便不能在正常情况下沸腾,便会升高温度形成局部过热的亚稳定状态导至暴沸。

如果在液体内加上沸石,则在沸石表面的尖端有较大的凸端,此处pr(气泡内压强)>>p*(液体饱和蒸气压),因而容易沸腾,并且沸石内部吸附的空气,也因受热而脱附,成为形成气泡气核,又因沸石与瓶底紧密相接,而成为局部过热处,两者相接处的液膜在瞬间过热,pr>p*,便成为微泡,使沸石跳动,结果便成为一新气泡上升。

5.用三通活塞,在玻璃管的两端吹两个大小不等的肥皂泡,当将两个肥皂泡相通时,两个泡的大小有何变化?

答:

小泡变小,大泡变大,直到两边曲率半径相等时。

这是因为肥皂泡是曲面,表面上有附加压力,这个压力指向曲面圆心。

根据拉普拉斯公式,曲率半径越小,附加压力越大。

小泡受的附加压力比大泡大,则内部的平衡压力也比大泡大。

当活塞打开后,小泡中部分空气向大泡转移,所以小泡变小,大泡变大,直到两边曲率半径相等。

6.如果在一杯含有极微小蔗糖晶粒的蔗糖饱和溶液中,投入一块较大的蔗糖晶体,在恒温密闭的条件下,放置一段时间,这时该溶液有何变化?

答:

任何物质的饱和溶液,当其中存在着大小不同的被溶解物质晶态物质时,实际上这些大小不同的同种晶态物质的溶解度是不同的,晶粒越小越微,其溶解度越大。

因此,将这饱和溶液长期放置后,微晶、小晶体便逐渐消失,而大块晶体却逐渐增大。

7.为什么水在玻璃管中呈凹形夜面,而水银则呈凸形?

答:

因水与玻璃的接触小于90°,水的表面的附加压力为负值,这样就使水在玻璃管中呈凹面。

而水银与玻璃的接触为大于90°,水银表面的附加力为正值,因而水银在玻璃管内呈凸形液面。

8.为什么喷洒农药时要在农药中加表面活性剂?

答:

植物有自身保护功能,在叶子表面有蜡质物而不被雨水润湿,可防止茎叶折断。

若农药是普通水溶液,喷在植物上不能润湿叶子,即接触角大于90°,成水滴淌下,达不到杀虫效果;加表面活性剂后,使农药表面张力下降,接触角小于90°,能润湿叶子,提高杀虫效果。

所以有的农药在制备时就加了表面活性剂,制成乳剂,可很好地润湿植物的茎叶。

《胶体与表面化学》复习思考题

一、凝胶

1.什么是凝胶?

有何特征(两个不同)?

外界条件(如温度、外力、电解质或化学反应)的变化使体系由溶液或溶胶转变为一种特殊的半固体状态,即凝胶。

(又称冻胶)其一,凝胶与溶胶(或溶液)有很大的不同。

溶胶或溶液中的胶体质点或大分子是独立的运动单位,可以自由行动,因而溶胶具有良好的流动性。

凝胶则不然,分散相质点互相连接,在整个体系内形成结构,液体包在其中,随着凝胶的形成,体系不仅失去流动性,而且显示出固体的力学性质,如具有一定的弹性、强度、屈服值等。

其二,凝胶和真正的固体又不完全一样,它由固液两相组成,属于胶体分散体系,共结构强度往往有限,易于遭受变化。

改变条件,如改变温度、介质成分或外加作用力等,往往能使结构破坏,发生不可逆变形,结果产生流动。

由此可见,凝胶是分散体系的一种特殊形式,共性质介于固体和液体之间。

2.举例说明什么是弹性和非弹性凝胶?

由柔性的线性大分子物质,如洋菜吸附水蒸气先为单分子层吸附,然后转变为多分子层吸附,硫化橡胶在苯蒸气中的吸附则是从一开始即为多分子层吸附。

这类凝胶的干胶在水中加热溶解后,在冷却过程中便胶凝成凝胶。

如明胶、纤维素等,在水或水蒸气中都发生吸附。

不同的吸附体系,其吸附等温线的形状不同,弹性凝胶的吸附与解析通常会形成较窄的滞后圈。

由刚性质点(如SiO2、TiO2,V2O5、Fe2O3等)溶胶所形成的凝胶属于非弹性凝胶,亦称刚性凝胶。

大多数的无机凝胶,因质点本身和骨架具有刚性,活动性很小,故凝胶吸收或释出液体时自身体积变化很小,属于非膨胀型。

通常此类凝胶具有多孔性结构,液体只要能润湿,均能被其吸收,即吸收作用无选择。

这类凝胶脱水干燥后再置水中加热一般不形成原来的凝胶,更不能形成产生此凝胶的溶胶,因此这类凝胶也称为不可逆凝胶。

3.试述凝胶形成的基本推荐?

①降低溶解度,使被分散的物质从溶液中以“胶体分散状态”析出。

②析出的质点即不沉降,也不能自由行动,

而是构成骨架,在整个溶液中形成连续的网状结构。

4.凝胶形成的方法有哪几种?

改变温度转换溶剂加电解质进行化学反应

5.凝胶的结构分为哪4种类型?

A球形质点相互联结,由质点联成的链排成三维的网架Ti02、Si02等凝胶。

B棒状或片状质点搭成网架,如V205凝胶、白土凝胶等。

C线型大分子构成的凝胶,在骨架中一部分分子链有序排列,构成微晶区,如明胶凝胶、棉花纤维等。

D线型大分子因化学交联而形成凝胶,如硫化橡胶以及含有微量:

二乙烯苯的聚苯乙烯都属于此种情形。

6.溶胶≒凝胶转变时有哪些现象?

转变温度(大分子溶液转变为凝胶时,无严格恒定的转变温度,它往往与冷却快慢有关,并且凝点(胶凝温度)常比熔点(液化温度)低.两者相差可达(10-20)度或更大些。

热效应(大分子溶液形成凝胶时常常放热,这可视为结晶作用的潜热)

光学效应(溶胶转变为凝胶时,Tyndall效应(光散射)增强,这是由于质点增大、水化程度减弱的缘故)

流动性质(溶胶转变为凝胶后流动性质变化很大,溶胶失去流动性.凝胶获得了弹性、屈服值等)

电导(溶胶胶凝后,体系的电导无明显变化)

凝胶表面的亲水性(溶胶中的质点表面若具有亲水性基团,则胶凝后其表面仍具有亲水性)

7.要制备很浓的明胶溶液而又不使胶凝,应加入什么物质比较好?

为什么?

(P147)

导电和扩散等,还可以是凝胶中的物质和外加溶液间的化学反应,也可以是两种溶液在凝胶中进行化学反应。

8.什么是凝胶的触变作用?

简单叙述其机理?

由于在外力作用下体系的粘度减小,流动性变大.因此这个现象习惯上也称为切稀。

机理:

颗粒之间搭成架子,流动时架子被拆散。

之所以存在触变性是因为被拆散的颗粒再搭成架子时需要时间

9.什么是负触变作用?

绝大部分为什么体系?

与触变作用相反的现象是负触变作用。

此体系的基本持点是在外力(切力或切速)作用下体系的粘度升高,但静置一段时间后粘度又恢复原状,出现顺时针方向的滞后团。

显然,负触变现象正好与触变性相反.是一种具有时间因素的切稠现象。

具有负触变性的体系绝大部分为高分子溶液,例如SiO2、钠蒙脱土等悬浮液中加入高分子溶液(如聚丙烯酰胺水解溶液),在一定的条件下出现负触变作用。

10.什么是离浆作用?

为什么?

离浆就是水凝胶在基本上不改变外形的情况下,分离出其中所包含的一部分液体.此液体是大分子稀溶液或稀的溶胶。

又称“脱水收缩”“出汗”。

作用的原因:

是由于溶胶在形成具有网状结构的凝胶后,粒子之间的距离还不是最小的,粒子之间仍继续互相作用,使粒子进步靠近和更完全地定向,从而使凝胶的骨架收缩.于是一部分液体被从粒子间挤压出来,产生“出汗”离浆现象。

11.什么是凝胶的有限膨胀和无限膨胀?

其膨胀速度符合什么动力学特征?

凝胶的膨胀(溶胀)作用,是指凝胶在液体或蒸气中吸收这些液体或蒸气时.使自身质量、体积增加的作用。

膨胀作用是弹性凝胶所特有的性质。

无限膨胀,即开始时凝胶吸收液体而体积增大,但最终完全溶解成溶液,又名溶胀作用。

有限膨胀,凝胶吸收—定量的液体后并不转变成溶胶,如明胶在冷水中、硫化橡胶在苯中。

凝胶的膨胀速度符合一级反应的动力学方程式

式中,S为膨胀度,即凝胶在膨胀时间为t时吸收的液体量;Smax为吸收液体的最大量(平衡态下);K为膨胀速度常数。

12.试述凝胶膨胀的两个阶段。

第一阶段——形成溶剂化层。

即溶剂分子很快地钻入凝胶中,与凝胶大分子相互作用形成溶剂化层。

这个阶段时间很短,速度快,表现出的特征有:

1)液体的蒸气压很低

(2)体积收缩凝胶膨胀时,凝胶的体积增大,但就整个体系说,其增量比吸收的液体体积为小。

(3)伴有放热效应凝胶膨胀时放出的热叫膨胀热(4)溶剂熵值降低由于溶剂化层中液体分子排列有序,故体系的熵值降低。

第二阶段——液体的渗透和吸收。

在这个阶段中.液体的吸收量是干胶质量的几倍、几十倍,同时也没有明显的热效应和体积收缩现象。

凝胶的体积也大大增加,凝胶干燥时,这部分的液体也容易释出

13.物质在凝胶中扩散速率减慢的原因是什么?

扩散物质的分子越大,在凝胶中的扩散速率越慢

14.试述凝胶色谱(GPC)技术的基本原理?

答:

实验表明,扩散物质的分子越大,在凝胶中的扩散速率越慢,例如尺寸大于20nm的溶胶颗粒在凝胶中几乎不能扩散。

当分子大小不同的混合物溶液通过用凝胶颗粒填充的色谱柱时,尺寸越小的分子进入网络的机会越多,在其间停留的时间也越长。

反之,尺寸较大的分子进入网络的机会较小,甚至不能进入网络之中,只能停留在凝胶颗粒之间的缝隙中。

当以溶剂淋洗色谱柱时,被吸附在色谱柱上的物质将按分子的尺寸,从大到小的顺序依次被淋洗下来,从而达到分离的目的。

这正是凝胶色谱(GPC)技术的基本原理。

15.试用Ostwald的过程和理论解释Liesegang环现象。

P162

当高浓度的AgN03溶液由中心向四周扩散时,遇到K2Cr207发生化学反应并生成橙红色的Ag2Cr207沉淀环。

第一环沉淀形成后,环外地带的K2Cr2O7浓度变得很低,成为空白区。

在此区域内难以满足形成Ag2Cr207沉淀的过饱和条件,所以无沉淀生成。

AgN03溶液越过空白区后,重又与K2Cr2O7反应并形成第二个沉淀环,依此类推,但各环的间距逐渐变大,沉淀环也逐渐变宽和变得模糊。

16.形成Liesegang环的必要条件是什么?

答:

物质在扩散过程中无对流和扰动是形成Liesegang环的必要条件。

17.目前高吸水性材料其吸水量约可达自身质量的多少倍?

答:

吸水量可达到自身质量的500—1000倍,最高的达5300倍。

18.试述高吸水性凝胶的结构、组成和吸水性能的关系。

答:

高吸水性材料不仅应含有相当多的亲水基因,而且本身还要不溶于水。

超强吸水剂为弹性凝胶,吸水后形成水凝胶:

凝胶的种类不同,结构不同,其吸水能也大有不同离子性聚合物的亲水性比非离子性聚合物强。

吸水能力强,在离子性聚合物中,离子化程度越高,吸水能力越强。

超强吸水剂有很强的吸水能力,但从使用角度考虑,它应不溶解于水。

聚丙烯酸类吸水剂有很强的吸水能力,但易水溶,为解决此问题,合成时应加入适量交联剂甲醛(或环氧氯丙烷等)。

在制备超强吸水剂时,同种类型凝胶的一般规律是:

交联度增加,吸水能力降低;但交联度太低,又可使凝胶吸水时成为无限膨胀。

19.什么是高吸油性树脂?

其吸油能力主要起源于什么作用力?

答:

吸油材料是一种用于处理废油的功能性材料。

它主要用于原油泄漏、工厂机器渗漏油和食品废油的处理等。

20.高吸油树脂的吸油机理是什么?

答:

机理吸油树脂通常都是由亲油单体构成的,具有适当交联度的三维网状结构的聚合物,因而树脂内部均有一定的微孔。

当树脂与油品接触时,开始油分子向微孔中扩散,当进入一定量的油分子后,高分子链段发生溶剂化(vanderWaals力),当油分子进入足够多时,则高分子链段伸展并发生溶胀。

溶胀过程中交联点之间分子链的伸展又会降低其构象熵值,ΔG=ΔH-TΔS,ΔG增加,这必然引起分子网的弹性收缩力,力图使分子网收缩,最后这两种相反的倾向达到平衡,并表现出一定的吸油率。

21.水凝胶中的水、按作用力的强弱可分为哪4种状态?

①靠氢键与吸水剂相互作用的水②亲水基团周围的极化水层③网络微孔中的水④颗粒间隙和大孔中的水

22.水凝胶中的水按作用力的强弱可分为哪4种状态?

①靠氢键与吸水剂相互作用的水②亲水基团周围的极化水层③网络微孔中的水④颗粒间隙和大孔中的水

23.什么是气凝胶?

有哪些主要特点和用途?

P188

气凝胶是指,由胶体粒子或高聚物分子相互聚结构成纳米多孔网络结构,并在孔隙中充满气态介质的高分散固体材料。

气凝胶的某些特性

(1)热学性能气凝胶质轻多孔,孔中充满气体,其导热率很低,即使在真空条件下,其导热率也仅是非多孔玻璃的1/500左右。

因此,气凝胶可用作冰箱的隔热材料,以代替用氟里昂发制的聚氨酯泡沫。

又如在Si02气凝胶材料中掺人遮光剂(如炭黑等),则导热率更低,是目前隔热性能最好的固态材料。

(2)电学性能实验测得ρ为8kg·m-3的某Si02气凝胶的ε为1.008,它是目前介电常数最低的块状固体。

而其他Si02气凝胶的介电常数也很低(1<ε<2),且连续可调,因此可望用于高速运算的大规模集成电路的衬底材料。

(3)声学性能Si02气凝胶纵向声传播速率极低,因此是一种理想的声阻抗耦合材料。

(4)吸附和催化性能等气凝胶不仅是好的吸附剂、催化剂载体,还是很好的催化剂

二、表面活性剂的洗涤作用

1.如何评价洗涤剂性能的优劣

答:

衣料洗涤剂去污力测定标准(GB/T13174—91),餐具洗涤剂国家标淮(GB9985—88)•通用水基清洗剂国家专业标准(ZB43002—86)•金属材料用水基洗涤剂(HB5226—82,航天部标准)2.简述液体污垢去除的过程

答:

液体油污的去除是通过油污的卷缩机理而实现的。

在洗涤之前油污一般以铺展状态存在于物品表面。

此时,在固(S)、液(L)、气(G)三相界面上油污的接触角近于00。

将物品置于洗涤液后,油污由处于固、油、气三相界面上变为处于固、油、水三相的界面上,其界面张力由原来的γSG、γOG和γSO,变为γSW/(固—水)γSO(固—油)和γOW(油—水)于是在洗涤剂的作用下,三个张力发生变化,开始对铺展的油污进行“卷缩”。

卷缩同时发生在固、油、水三相界面上,粘附有油污的固体浸入水中时,固、油、水三相平衡时的状态,当加入水溶性洗涤剂后,由于洗涤剂在固—水界面以疏水基吸附于固体表面,亲水基伸入水中的吸附状态在固—水界面作定向排列使γSW下降,在油—水界面上以疏水基伸进油相,亲水基伸入水相的吸附状态在油—水界面作定向排列降低了γOW,在固——油界面上由于水溶性洗涤剂不溶于油而不能吸附于固—油界面,因此

γSO不会发生改变.由于三相界面上的张力发生变化,为了使杨氏

方程达成新的平衡,γOWcosθ必须增大,因此θw必须减少,油污就会逐渐地被卷缩

3.油污完全去除的条件是什么?

答:

油污去除的程度均决定于接触角的大小。

当洗涤液在固体表面的接触角θw=o即油在固体表面的接触角θO=180时,油污可以自发地脱离固体表面,若90<θo<180时,油污不能自发地脱离表面,但可在流动的水中因水的冲刷力而使其变形伸长再加之油水密度差而产生的浮力使油污完全去除。

若洗涤物品亲油性较

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 少儿英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1