计算机电子信息系统雷电防护设计方案重点.docx

上传人:b****6 文档编号:8530814 上传时间:2023-01-31 格式:DOCX 页数:24 大小:44.29KB
下载 相关 举报
计算机电子信息系统雷电防护设计方案重点.docx_第1页
第1页 / 共24页
计算机电子信息系统雷电防护设计方案重点.docx_第2页
第2页 / 共24页
计算机电子信息系统雷电防护设计方案重点.docx_第3页
第3页 / 共24页
计算机电子信息系统雷电防护设计方案重点.docx_第4页
第4页 / 共24页
计算机电子信息系统雷电防护设计方案重点.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

计算机电子信息系统雷电防护设计方案重点.docx

《计算机电子信息系统雷电防护设计方案重点.docx》由会员分享,可在线阅读,更多相关《计算机电子信息系统雷电防护设计方案重点.docx(24页珍藏版)》请在冰豆网上搜索。

计算机电子信息系统雷电防护设计方案重点.docx

计算机电子信息系统雷电防护设计方案重点

电子信息系统防雷工程的设计重点

电子信息系统综合防雷工程的设计决不是拿几个SPD一安装就解决问题,设计要把握的重点按GB50343的规定有以下方面:

等电位连接与共用接地系统、屏蔽及布线、防雷与接地、安装电涌保护器。

现分别重点介绍如下:

以业内人员多年的经验以及国家标准、国际标准的规定与表述。

可以说,接地、等电位连接、屏蔽是重中之重的措施,对信号传输、信号控制线的防护、电磁屏蔽、接地装置尤为重要。

近几年来由于较为广泛的防雷电电磁脉冲,安装了不少电源信号SPD,好似只要安装电涌保护器就可以保平安,殊不知安装SPD知识雷电防护的一个部分内容,国际、国家标准大量规范了等电位与共用接地和电磁屏蔽与综合布线,因此作为一个综合防雷工程首先要做好基础的建筑物外部、内部防雷工程。

1、等电位连接与共用接地系统

GB50343规范中作为强制性条文做出了如下表述:

条文5.1.2“需要保护的电子信息系统采取等电位连接与接地保护措施。

5.2.5中规定“防雷接地与交流工作接地、直流工作接地、安全保护接地共用一组接地装置时,接地装置的接地电阻必须按接入设备中要求的最小值确定。

5.2.6中规定“接地装置应优先利用建筑物的自然接地体,当自然接地体的接地电阻达不到要求时应增加人工接地体。

关于建筑物的接地在建筑施工图设计审核时应以GB50057-94为准进行设计、计算、施工,本文不多讲述。

重点介绍等电位连接网络。

等电位连接网络的主要任务是消除建筑物上及建筑物内所有设备间危险的电位差并减小建筑物内的磁场强度。

通过将建筑物上及建筑物内所有金属部件多重联结从而建立一个三维的网络形的等电位网络而实现。

等电位连接线应从地网引出,通过接地干线接至建筑物总等电位接地端子板,再通过接地干线接至楼层等电位接地端子板并于楼层建筑预留的结构钢筋接地端子相连。

再从楼层等电位接地端子板通过接地干线与电子信息系统机房内的局部等电位接地端子板或等电位接地网络相连,并与机房内建筑物预留的接地端子相连,形成一个等电位连接的共用接地系统。

5.2.1 电子信息系统的机房应设等电位连接网络。

电气和电子设备的金属外壳、机柜、机架、金属管、槽、屏蔽线缆外层、信息设备防静电接地、安全保护接地、浪涌保护器(SPD)接地端等均应以最短的距离与等电位连接网络的接地端子连接。

等电位连接网络的结构形式有:

S型和M型或两种结构形式的组合(见条文说明中的图1、图2)。

5.2.1条电气和电子设备的金属外壳、机柜、机架、金属管(槽)、屏蔽线缆外层、信息设备防静电接地和安全保护接地及浪涌保护器接地端等均应以最短的距离与等电位连接网络的接地端子连接。

其要求“以最短距离”系指连接导线应最短,过长的连接导线将构成较大的环路面积会增大对防雷空间内LEMP的耦合机率,从而增大LEMP的干扰度。

连接导线过长,将增大线路感抗,造成泄放雷电流不畅,从而降低了可靠性。

电子信息系统等电位连接网络结构如图2、图3所示:

ERP

 

图3电子信息系统等电位连接方法的组合

图2电子信息系统等电位连接的基本方法

建筑物的共用接地系统;:

等电位连接网;:

设备

ERP:

接地基准点;:

等电位连接网与共用接地系统的连接。

1S型结构一般宜用于电子信息设备相对较少或局部的系统中,如消防、建筑设备监控系统、扩声等系统。

当采用S型结构等电位连接网时,该信息系统的所有金属组件,除等电位连接点ERP外,均应与共用接地系统的各部件之间有足够的绝缘(大于10kV,1.2/50μs)。

在这类电子信息系统中的所有信息设施的电缆管线屏蔽层,均必须经该点(ERP)进入该信息系统内。

S型等电位连接网只允许单点接地,接地线可就近接至本机房或本楼层的等电位接地端子板,不必设专用接地线引下至总等电位接地端子板。

2对于较大的电子信息系统宜采用M型网形结构

如计算机房、通信基站、各种网络系统。

当采用M型网形结构的等电位连接网时,该电子信息系统的所有各金属组件,不应与共用接地系统的各组件之间绝缘。

M型网形等电位连接网应通过多点组合到共用接地系统中去,并形成Mm型等电位连接网络。

而且在电子信息系统的各分项设备(或分组设备)之间敷设有多条线路和电缆,这些分项设备和电缆,可以在Mm型结构中由各个点进入该系统内。

3对于更复杂的电子信息系统,宜采用S型和M型两种结构形式的组合式

如图3所示的组合方式。

这种等电位连接方法更为方便灵活,接线简便,安全、可靠性高。

4电子信息系统的等电位连接网采用S型还是M型,除考虑系统设备多少和机房面积大小外,还应根据电子信息设备的工作频率来选择等电位连接网络型式及接地型式,从而有效地消除杂讯干扰

5.2.2在直接雷非防护区(LPZ0A)或直击雷防护区(LPZ0B)区与第一防护区(LPZ1)交界处应设置总等电位接地端子板;每层楼宜设置楼层等电位接地端子板;电子信息系统设备机房应设置局部等电位接地端子板。

各接地端子板应设置在便于安装和检查的位置,不得设置在潮湿或有腐蚀性气体及易受机械损伤的地方。

等电位接地端子板的连接点应满足机械强度和电气连续性的要求。

建筑物内应设总等电位接地端子板,每层竖井内设置楼层等电位接地端子板,各设备机房设置局部等电位接地端子板(见图4建筑物防雷区等电位连接及共用接地系统示意图)。

当建筑物采取总等电位连接措施后,各等电位连接网络均与共用接地系统有直通大地的可靠连接,每个电子信息系统的等电位连接网络,不宜再设单独的接地引下线接至总等电位接地端子板,而宜将各个等电位连接网络用接地线引至本楼层或电气竖井内的等电位接地端子板。

等电位连接与共用接地系统是内部防雷措施中两种不同而又密切相关的重要措施,其目的都是为了避免在需要防雷的空间内发生生命危险,减小电子信息系统因雷击而损坏或中断正常工作、发生火灾等事故。

5.2.3接地线应从共用接地装置引至总等电位接地端子板,通过接地干线引至楼层等电位接地端子板,由此引至设备机房的局部等电位接地端子板。

局部等电位接地端子板应与预留的楼层主钢筋接地端子连接。

接地干线宜采用多股铜芯导线或铜带,其截面积不应小于16mm2。

接地干线应在电气竖井内明敷,并应与楼层主钢筋作等电位连接。

接地干线,宜采用截面积大于16mm2的铜质导线敷设,在施工中一般宜采用截面积大于35mm2的铜质导线敷设,其目的是使导线阻抗远远小于建筑物结构钢筋阻抗,为楼层、局部等电位接地端子板上可能出现的雷电流提供了一个快速泄放的低阻抗通道。

接地系统的接地干线与各楼层等电位接地端子板及各系统设备机房内局部等电位接地端子板之间的连接关系,可参见图4、图5、图6、图7

 

地面

图5电子信息系统机房M型等电位历史凝结网络系统图

图4建筑物防雷区等电位连接及共用接地系统示意图

配电箱

PE:

保护接地线

SI:

进出电缆金属护套接地

MEB:

总等电位接地端子板

楼层等电位接地端子板

LPZ0A

电视天线

卫星天线

LPZ0B

避雷带

有线电视

前端箱

楼板内钢筋

等电位连接

利用柱内

主筋做引

下线

预留检测点

 

利用基础及柱内钢筋做接地装置

700mm

≥300mm

预留检

测点

计算机网络线

电话电缆

=

通讯电话

计算机

总配线架

2层

1层

电源PE线

楼宇

消防

监控

变配电

D1层

电源进线

水泵

水池

总等电位接地端子板

MEB

D2层

N层

电气竖井接地干线

配线架

LPZ2

LPZ1

无线通信

顶层

 

接地干线

电气竖井

电气竖井楼层

接地端子板

○○○○

S型等电位连接网络

接地线

直流地接地线

设备保护接地线

SPD接地线

防静电地板接地线

屏蔽设施接地线

金属槽等电位连接线

○○○○○○○

 

图5电子信息设备机房S型等电位连接网络示意图

 

电子信息设备

单台设备

D

C

本层竖井

M型等电位连接网络

设备机房示意

B

A

B

线槽

○○○○

○○○○

○○○○

图中:

A电气竖井内等电位接地端子板B设备机房内等电位接地端子板

C防静电地板接地线D金属线槽等电位连接线

电气竖井接地干线

图6电子信息系统机房M型等电位连接网络系统图

 

防静电地板接地线

图7电子信息系统机房等电位连接系统图

计算机柜接地示意图

安全保护地

计算机柜

直流工作接地线

接地线

接地线

屏蔽设施接地线

SPD接地线

直流工作地接地线

设备保护接地线

 

5.2.4不同楼层的综合布线系统设备间或不同雷电防护区的配线交接间应设置局部等电位接地端子板。

楼层配线柜的接地线应采用绝缘铜导线,截面积不小于16mm2。

每一楼层的配线柜的接地线都应采用截面积不小于16mm2的绝缘铜导线单独接至局部等电位接地端子板。

规定连接导体截面积的范围基于如下根据:

《建筑物防雷设计规范》GB50057-94表6.3.4各种连接导体的最小截面积规定,等电位连接带之间和等电位连接带与接地装置之间的连接导体,铜材最小截面积为16mm2;

《建筑与建筑群综合布线系统工程设计规范》GB/T50311-2000表3接地导线选择表中规定,楼层配线设备至大楼总等电位接地端子板的距离≤30m时,接地导线截面积为6—16mm2;距离≤100m时,接地导线截面积为16—50mm2。

考虑到导线本身的电感效应及雷电电磁脉冲在导线上的趋表效应等因素,最后综合起来选用截面积不小于16mm2的规定。

5.2.5 防雷接地应与交流工作接地、直流工作接地、安全保护接地共用一组接地装置,接地装置的接地电阻值必须按接入设备中要求的最小值确定。

此条文为强制性条文。

在建筑物电子信息系统防雷设计时必须坚决执行。

共用接地系统是由接地装置和等电位连接网络组成。

接地装置是由自然接地体和人工接地体组成。

采用共用接地系统的目的是达到均压、等电位以减小各种接地设备之间、不同系统之间的电位差。

其接地电阻因采取了等电位连接措施,所以按接入设备中要求的最小值确定。

没有必要规定共用接地系统的接地电阻要小于1Ω。

建筑物外部防雷装置是直接安装在建筑物外部,防雷装置与各种金属物体之间的安全距离不可能得到保证。

为防止防雷装置与邻近的金属物体之间出现高电位反击,减小其间的电位差,除了将屋内的金属物体做好等电位连接外,应将各种接地(交流工作接地、安全保护接地、直流工作接地、防雷接地等)共用一组接地装置。

上述四种接地的接地引出线可与环形接地体相连,形成等电位连接,但防雷接地在环形接地体上的接地点与其他几种接地的接地点之间的距离宜大于10m。

5.2.6 接地装置应利用建筑物的自然接地体,当自然接地体的接地电阻达不到要求时必须增加人工接地体。

此条文为强制性条文,在建筑物电子信息系统防雷设计时必须坚决执行。

5.2.7 当设置人工接地体时,人工接地体宜在建筑物四周散水坡外大于1m处埋设成环形接地体,并可作为总等电位连接带使用。

当自然接地体达不到接地电阻要求时,应设置人工接地体。

人工接地体设置在散水坡1m以外,可以不破坏散水坡保护面,同时也加大了地网包围的有效面积。

在建筑外设计成闭合的环形,可以起到均压环的作用,也可以从不同的方位引入地线作等电位连接使用。

同时可以作为不同位置进入建筑物线缆的外屏蔽层接地线使用。

5.3屏蔽及布线

5.3.1 电子信息系统设备机房的屏蔽应符合下列规定:

1、电子信息系统设备主机房宜选择在建筑物低层中心部位,其设备应远离外墙结构柱,设置在雷电防护区的高级别区域内。

2、金属导体,电缆屏蔽层及金属线槽(架)等进入机房时,应做等电位连接。

3、当电子信息系统设备为非金属外壳,且机房屏蔽未达到设备电磁环境要求时,应设金属屏蔽网或金属屏蔽室。

金属屏蔽网、金属屏蔽室应与等电位接地端子板连接。

二十世纪以来,人类迎来了信息时代。

各种业务工作、市场竞争都依赖于信息。

由计算机技术、微电子技术、传输技术等组成的信息系统是信息的主要来源,其发展非常迅速,已广泛进入到各行各业和千家万户。

跟踪微电子技术的进展则是雷电电磁脉冲(LEMP)的无孔不入。

电子信息系统设备对雷电感应的过电压、过电流的耐受能力却有所降低,于是很少出现或者从来不出现雷灾的行业或地区也频繁遇到雷击灾害。

雷电具有高电压、大电流和瞬时性特点。

一次中等雷击的电荷量有几十库仑;电流达到几万安培、电压有几十万伏、能量达到百兆焦耳以上。

而电子信息设备仅能承受毫焦耳级能量;几十毫安电流、几十伏耐过电压能力。

对于集成芯片,0.07GS的磁感应强度就会使它误动作;2.4GS就会使它永久性损坏。

这一相比,差别悬殊。

因此,有关电子信息系统的现代防雷技术中,尤其是大型信息系统、重要的信息系统,防雷击电磁脉冲的措施中,屏蔽技术是首选的措施。

利用各种屏蔽体来阻挡、隔离和衰减施加在电子信息设备上的雷电干扰和能量。

屏蔽分成建筑物屏蔽、机房屏蔽、设备屏蔽、线缆屏蔽。

屏蔽技术应按雷电防护区的划分进行多级屏蔽。

屏蔽的效果首先取决于初级屏蔽对电磁场的衰减程度。

钢筋混凝土结构的建筑物,其钢筋结构可充当有效的初级电磁屏蔽体,此屏蔽有助于保护电气和电子设备承受或减少雷电电磁场所引起的干扰侵害。

只要钢筋结构在外部和内部,使得电气贯通性符合IEC61024-11.3条的要求:

“垂直与水平钢筋交叉点约有50%采用焊接或可靠绑扎连接;搭接长度至少为其直径的20倍,并可靠绑扎;各预制混凝土构件与各相邻预制混凝土构件有钢筋体的电气贯通”,就可实现为内部安装的电气、电子设备提供有效的雷电防护。

机房屏蔽是雷电防护区(LPZ2)的屏蔽,重要电子设备或中心机房应安置在本区内,其屏蔽效果是雷电流不能导入此空间,也不能穿过此空间。

深圳某银行总部的中心机房就是采取六面屏蔽措施:

机房四周墙壁用薄钢板焊接屏蔽,机房屋顶和防静电地板下面用铝箔合金制成屏蔽体。

广东省电信局规定:

程控交换机房应采用六面网格屏蔽,网格应不大于3cm×3cm。

屏蔽网每面都应焊接,并与大楼钢筋多点连接。

机房的门、穿也要采用金属屏蔽措施。

作为屏蔽结构,必须要求按规定的网格尺寸制作,全部网格结点均应焊接。

屏蔽网的网格越大,衰减越小;网格孔越小,衰减越大。

为了使各防雷区的电磁场得到相应的衰减,屏蔽、等电位连接是两个密不可分的防护措施。

对钢筋混凝土结构建筑物,当本建筑物落雷时,其外墙和外围柱子的雷电流密度较大,电磁感应也较强。

流经内部导体的冲击电流相对较小,因此建筑物内部中央的电磁场也相对较弱。

所以重要的电子设备或电子信息系统设备主机房应设置在建筑物内中心部分才能取得最佳的屏蔽效果。

同理各种电气线路的总干线金属线槽也应敷设在建筑物内的中心部位处,在建筑物的外墙应避免装设电气线路和设备。

对于原建筑物为高层建筑的情况,电子信息系统设备主机房及附属房间,应尽可能地位于二至四层,其优点有:

(1)可减少邻近落雷及外界电磁场的干扰,因为空间位置越高,电磁干扰越强。

(2)主机房设置在高层建筑物的下层,有利防火,避免建筑底层起火而自下而上蔓延,危及设在高层的设备的安全。

(3)有利于大型和重型设备如UPS电源等的安装和调试。

(4)可以减少振动的影响。

当建筑物遇到外界振动影响或发生地震时,建筑物上层的振幅远大于低层。

至于主机房设置在底层,则不利于机房防潮和防水。

这在我国华南部分地区尤为突出。

5.3.2 线缆屏蔽应符合下列规定:

1 需要保护的信号线缆,宜采用屏蔽电缆,应在屏蔽层两端及雷电防护区交界处做等电位连接并接地。

2当采用非屏蔽电缆时,应敷设在金属管道内并埋地引入,金属管应电气导通,幷应在雷电防护区交界处做等电位连接幷接地。

其埋地长度应符合下列表达式要求,但不应小于15m。

(5.3.2)

式中

----埋地长度(m);

----埋地电缆处的土壤电阻率(

m)

3 当建筑物之间采用屏蔽电缆互联,且电缆屏蔽层能承载可预见的雷电流时,电缆可不敷设在金属管道内。

4光缆的所有金属接头、金属挡潮层、金属加强芯等,应在入户处直接接地。

线缆屏蔽能使电气和电子系统内感应的电压和电流减至最小。

电源线路、信号线路线缆应采用带有金属屏蔽层的线缆或套入金属管的办法进行敷设。

在室外应埋地敷设进入建筑物;在楼内一般采用金属屏蔽槽垂直敷设和水平敷设方式进入机房。

信号线缆中的数据、用户电话、控制信号、视频等线缆应分别用金属槽敷设,避免放在一个线槽内相互干扰。

线缆的屏蔽层和屏蔽金属槽应在穿过各防雷区交界处接地并作等电位连接,金属线槽应电气连通。

5.3.3 线缆敷设应符合下列规定:

1 电子信息系统线缆主干线的金属线槽宜敷设在电气竖井内。

2电子信息系统线缆与其它管线的间距应符合表5.3.3-1的规定。

表5.3.3-1电子信息系统线缆与其它管线的净距

间距

线缆

其它管线

电子信息系统线缆

最小平行净距(mm)

最小交叉净距(mm)

防雷引下线

1000

300

保护地线

50

20

给水管

150

20

压缩空气管

150

20

热力管(不包封)

500

500

热力管(包封)

300

300

煤气管

300

20

注:

如线缆敷设高度超过6000mm时,与防雷引下线的交叉净距应按下式计算:

S≥0.05H

式中:

H—交叉处防雷引下线距地面的高度(mm);S—交叉净距(mm)。

3布置电子信息系统信号线缆的路由走向时,应尽量减小由线缆自身形成的感应环路面积。

4 电子信息系统线缆与电力电缆的间距应符合表5.3.3-2的规定。

表5.3.3-2电子信息系统线缆与电力电缆的净距

类别

与电子信息系统信号线缆接近状况

最小净距(mm)

380V电力电缆容量

小于2kVA

与信号线缆平行敷设

130

有一方在接地的金属线槽或钢管中

70

双方都在接地的金属线槽或钢管中

10

380V电力电缆容量

2~5kVA

与信号线缆平行敷设

300

有一方在接地的金属线槽或钢管中

150

双方都在接地的金属线槽或钢管中

80

380V电力电缆容量

大于5kVA

与信号线缆平行敷设

600

有一方在接地的金属线槽或钢管中

300

双方都在接地的金属线槽或钢管中

150

注:

1、当380V电力电缆的容量小于2kVA,双方都在接地的线槽中,即两个不同线槽或在同一线槽中用金属板隔开,且平行长度小于等于10m时,最小间距可以是10mm。

2、电话线缆中存在振铃电流时,不宜与计算机网络在同一根双绞线电缆中。

5 电子信息系统线缆与配电箱、变电室、电梯机房、空调机房之间最小的净距宜符合表5.3.3-3的规定。

表5.3.3-3电子信息系统线缆与电气设备之间的净距

名称

最小间距(m)

配电箱

1.00

变电室

2.00

电梯机房

2.00

空调机房

2.00

电子信息系统所在建筑物遭到直接雷击或击中邻近其它建筑物避雷针并由引下线导入大地时,瞬时间在引下线周围自上而下的产生了一强力的变化磁场,处在这个强力变化磁场作用范围内的电源、信号传输线路或其它金属管道等都因相对地切割了这个强力变化磁场的磁力线,而产生出感应高电压,其电压的大小取决于低压电源线路与信号线路所组成的有效感应环路面积的大小。

因此,现代防雷技术的措施中,合理布线是措施之一。

合理布线是指电源线缆不能与信号线缆绑扎在一起或同用一个金属槽敷设;二者也不能相距太远。

就是说既要避开相互干扰,又要避免它们间构成较大的环路面积。

否则环路中雷电感应过电压显著增加,容易造成设备损坏。

因此,本规范对电子信息系统线缆与其它管线的净距(表5.3.3-1)、电子信息系统线缆与电力线缆的净距(表5.3.3-2)、电子信息系统线缆与电气设备之间的净距(表5.3.3-3)分别作出规定。

5.4.1电源线路防雷与接地应符合下列规定

1、进出电子信息系统机房的电源线路不宜采用架空线路。

当建筑物上空发生云际闪、建筑物邻近地区或建筑物本身落雷时,建筑物内的各个雷电防护区域内,都将充满瞬态的、波前陡峭的、幅度很高的雷电电磁脉冲状的电磁场,这种电磁场可称为由直接雷引发的雷电脉冲感应场。

如果进出电子信息系统机房的电源线路是架空敷设的,那末,这种感应场将通过电磁耦合的方法作用于架空的电源线路,此线路上将产生感应电压UM。

UM的大小与雷电流通路和电源线路之间的耦合度M及雷电流的陡度di/dt成正比,即UM=M(di/dt)。

设M=1μH,IL在2μs内上升到100KA,则UM=(1×10-6×100×103)/(2×10-6)=50KV。

此感应电压亦呈脉冲状,并且立即出现在电子信息设备的电源输入端口,对电子设备将造成严重威胁。

所以进、出电子信息系统设备机房的电源线路不宜架空,宜采用带金属屏蔽层的线缆或穿金属管敷设。

2、电子信息系统设备采用TN交流配电系统时,配电线路和分支线路必须采用TN-S系统的接地方式。

在我国,由于历史的原因,在不同的地区和部门,普遍地采用着TN或TT配电系统。

TN系统中,又分为TN-S、TN-C-S、TN-C配电系统。

用这些拉丁字母来表示在各系统中的意义如下:

T—表示“接地”;N—表示“中性线”或“零线”;

S—表示“分开”;C—表示“合并”;

TN—表示“接零保护”;TT—表示“接地保护”。

如此一来,各种配电系统的意义就清楚了。

TN-S配电系统:

即三相五线制(单相三线制)配电方式。

在这种配电方式的整个系统(包括分支线路)中,具有单独的中线(N)和保护接地线(PE),即在整个系统中中线与保护接地线始终是分开的,图例如本规范图5.4.1-1或图5.1.3

(1)所示。

TN-C配电系统:

在这种系统中,其中性线和保护接地线的功能合并在一条单独的导线上,形成所谓的三相四线制系统,如图5.1.3(3)所示。

图5.1.3(30TN-C配电系统(在整个系统中,N和PE合并在一起)

TN-C-S配电系统:

在这种系统的某一部分中,其中性线N和保护接地线PE合并在一起连在一条单独的导线上,形成局部的三相五线制配电系统,如图5.1.3

(2)所示。

图5.1.3

(2)TN-C-S配电系统(在系统的某一部分中,N和PE合并在一起)

TT配电系统:

(又称接地保护系统):

它是具有一个直接接地点的配电系统,电气装置的外露导电零部件与接地电极连接,该接地电极与配电系统的接地电阻无电气连接。

如图5.1.3(4)所示。

如图所示,N线和PE线的接地装置是分开的。

若一旦N线有LEMP侵入,N与PE间将出现很高的电位差,易造成地电位反击。

图5.1.3(5)TT配电系统(具有一个直接接地点,N与PE无电气连接)

我们从三种TN配电系统的比较中可以看出:

1)TN-C配电系统,由于N和PE合并在一起(当三相电源的各相负责不平衡时,IN=iL1+iL2+iL3>0L4N),IN将在中性线线路阻抗及中性线接地装置的接地电阻上产生电压降UN,UN正比于IN,所以中性线上的电位将随IN的变化而浮动,形成三相电源各相电位的不稳定,从而导致电子信息系统设备交流输入电压的不稳定;同时,各种低频干扰、噪声等都会随之而入,影响设备供电电源的纯净性,使电源质量劣化,最终造成信息设备难以正常、稳定地工作。

2)TN-C-S配电系统,基本上和TN-C配电系统相仿。

但它在系统的某一部分中N线和PE线合并在一起连在一条单独的导线上,形成局部的三相五线制配电系统。

若电子信息系统设备电源输入取自该部分,电源质量比TN-C配电系统能得到改善,这是由于N和PE已被分开,PE线始终与等电位接

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 人力资源管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1