水工设施工组织设计指导书.docx

上传人:b****6 文档编号:8502158 上传时间:2023-01-31 格式:DOCX 页数:20 大小:31.76KB
下载 相关 举报
水工设施工组织设计指导书.docx_第1页
第1页 / 共20页
水工设施工组织设计指导书.docx_第2页
第2页 / 共20页
水工设施工组织设计指导书.docx_第3页
第3页 / 共20页
水工设施工组织设计指导书.docx_第4页
第4页 / 共20页
水工设施工组织设计指导书.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

水工设施工组织设计指导书.docx

《水工设施工组织设计指导书.docx》由会员分享,可在线阅读,更多相关《水工设施工组织设计指导书.docx(20页珍藏版)》请在冰豆网上搜索。

水工设施工组织设计指导书.docx

水工设施工组织设计指导书

水工设施工组织设计指导书

施工组织设计指导书

(水工专升本专业毕业设计用)

河海大学水利水电学院

2015年9月

施工组织设计任务书

一、工程概况

工程地处我国华东钱塘江的支流上,为一发电为主兼顾灌溉、防洪的水利枢纽工程。

在坝型比较阶段,比较了混凝土重力坝和粘土心墙砂壳坝两个方案。

后者的枢纽布置如图1—1所示,坝高81m,坝顶长度370m。

设计正常高水位为100m,校核洪水位为102m,大坝典型剖面见图Ⅱ-Ⅱ。

大坝属于2级建筑物。

溢洪道布置在距坝1km的左岸凹口处(图中未示),为开敞正槽式,其顶高程为92m,总宽是64m,出口采用差动式鼻坎挑流消能。

引水式电站布置在右岸,引水洞长525m,直径7m,厂房安装5万kW的机组两台。

二、施工条件

(一)施工工期

主体工程工期暂定为4年,2012年准备,2013年开工,2016年年底前发电(初始发电水位为80m)。

(二)坝址地形、地质及当地材料

坝址处流域面积2610km2,坝址以上河流全长104km;其中50km为通航河道,常年有载重5至10吨木船和竹木筏过坝。

坝址两岸系高山,山坡较陡。

坝址河谷宽为200m,河底高程25m。

两岸复盖层较薄,基岩为石英砂岩(X级);河床岩基较好,两岸岩石节理发育,风化较深。

河床砂砾复盖层厚为0~3m,平均1.5m。

坝址上下游均为宽阔冲积台地,在上下游3~7km的台地和河滩上,有满足筑坝要求的大量砂砾料(Ⅲ类土)。

采取水上砂砾平均运距5.5km;如就近采取水下砂砾,平均运距为3.5km;粘土料(Ⅲ类土)在左岸下游7km的王家村,高程为40~50m,储量丰富,质量满足设计要求。

(三)气象与水文

该工程位于华东,气候温和。

雨量充沛,每年5月至10月降雨较多,属温带多雨气候,按水文规律分为枯水期和洪水期(包括梅雨期与台风期),其界限不明显。

一般11月至次年4月底为枯水期,5月至10月为洪水期,其中5、6两个月的降雨量最大,占全年雨量的30%,该河流量属山区性河流,洪水暴涨暴落,最大流量高达8290m3/s,最小流量只有7~8m3/s,相差上千倍。

根据设计需要,给出下列各种水文、气象资料:

1、各月最大瞬时流量(m3/s)表1

-1-

频率标准:

所谓百年一遇,指工程由于洪水的原因失败的概率为1/100。

为了适应工程需求,一般将某一典型洪水过程线加以放大,使其洪水特征等于频率计算解得的设计值,即以为所得的过程线是待求的设计洪水过程线。

放大方法主要有:

同倍比同频率放大法。

2、各时段设计流量(m3/s)表2

3、典型年逐月平均流量(m3/s)表3

4、设计洪水过程线(图A);5、坝址水位流量关系曲线(图B);6、水库水位与库容关系曲线(图C);7、坝区各种日平均降雨量统计表(天)表4

8、坝区各种日平均降雨量统计表(天)表5

-2-

(四)施工力量及施工设备

施工承包商的大坝坝壳最大施工能力为10000m3/d,技术设备限在施工单位已有的设备中选用,数量不限,三材由国家统一分配。

(五)在坝型比较阶段,对该土坝枢纽的施工导流方案建议采用隧洞导流,并考虑上游土石围堰与坝体结合,以节省导流工程费用。

三、设计任务

研究分析现有资料,计算有效工日;在此基础上,分以下两部分进行设计。

第一部分施工导流计划

(一)确定导流标准

(二)确定施工导流方案,确定大坝施工分期和截流、拦洪、封孔、发电日期,初定大坝施工控制性进度。

(三)导流工程规划布置

1、根据导流方案和粗定的大坝拦洪高程,确定隧洞的断面型式和尺寸,并进行平、立面布置;

2、汛期大坝(或围堰)拦洪校核;

3、围堰型式、主要尺寸及布置。

第二部分主体工程施工

(四)土石坝施工

1、施工强度计算

2、开采、运输、压实机械型号选择及数量计算;

3、施工道路布置。

(五)导流隧洞开挖

1、开挖方法的选择;

2、施工作业组织及设备选择;

3、开挖作业组织;

4、绘制作业图表,计算施工工期和所需设备数量。

(六)拟定施工控制进度计划

四、设计成果

(一)大图(1号图)一张,要求画出:

1、导流建筑物及土、砂砾料上坝路线平面布置;

2、导流建筑物纵横剖面图、隧洞开挖面的孔眼布置及开挖循环作业图表;

3、大坝及主要隧洞施工机械汇总表。

(二)说明书一份、计算书一份。

说明书中除设计说明外,还应包括必要的插图、表格和枢纽工程施工总进度计划表。

-3-

土坝枢纽工程施工组织设计指示书

一、熟悉设计资料

全面了解给定的资料和设计任务。

l、水文资料:

最大设计流量、坝址水位流量关系曲线、库容曲线等;2、气象资料:

降雨、气温;3、地形地质条件和筑坝材料料场;4、水利枢纽组成建筑物的型式、尺寸;5、施工工期要求;6、施工机械与定额资料。

二、工日分析

工日分析是计算施工强度和论证施工进度的依据。

如已论证施工强度过大而工期不能改变,可以采用雨季或冬夏季施工措施,增加施工天数,减小施工强度,以保证计划实现。

l、工日分析按下式进行

月有效工日=日历天数-因雨雪、气温不能施工天数-其它原因停工天数2、依据:

(1)坝区各种降雨天数统计表(表4);

(2)坝区各种气温天数统计表(表5);

(3)法定假日:

5.1、5.2、5.3、10.1、10.2、10.3、1.1、春节及星期六、星期天;(4)各种工作因雨、气温停工标准见表6和表7。

3、本枢纽主要工程各月的有效工日计算按表8进行。

表6月因雨停工标准

-4-

表7因气温停工标准

表8××工种施工天数统计表

注:

粘土开采中若因雨停工降雨量既有10~30,又有>30,则统计停加天数时,只统计降雨量大的一种情况。

-5-

第一部分施工导流计划

一、导流标准

导流标准是进行施工导流计算,确定导流建筑的尺寸和建筑设计的依据。

导流标准的高低,关系到工程和下游人民生命财产及工农业生产的安全,也关系到工程造价和工期。

《水利水电施工组织设计规范》明确了新的导流标准规范包括围堰挡水、坝体施工期临时挡水、导流泄水建筑物封堵和水库蓄水三个基本阶段。

围堰挡水称初期导流,坝体挡水和封堵蓄水称为后期导流。

一般初期导流失事只影响围堰和基坑工程施工,而后期导流失事,则危及大坝及下游城镇安全,造成的损失比初期导流的大得多。

l、导流建筑物的级别

导流建筑物的级别是确定洪水标准和建筑物结构设计的依据。

根据我国的实际情况,规范规定导流建筑物划分为3、4、5三级,一般为4级和5级,并以3级来控制:

具体划分按表9所列各项指标确定,其中4、5级导流建筑物应按表列的四项指标中的最高级别确定,而3级导流建筑物要求有两项以上的指标满足该级要求。

2、洪水标准

表9导流建筑物级别划分

注:

(1)导流建筑物包括挡水和泄水建筑物,两者级别相同;

(2)当导流建筑物根据表中指标分属不同级别时,应以其中最高级别为准。

但列为3级导流建筑物时,至少应有两项指标符合要求;

(3)表列四项指标均按施工段划分;

(4)有、无特殊要求的永久建筑物都是针对施工期而言,有特殊要求的1级永久建筑物是指施工期不允许过水的土坝及其它有特殊要求的永久建筑物;

(5)使用年限是指导流建筑物每一导流分期的工作年限,两个或两个以上导流分期共用的导流建筑物,如分期导流一、二期共用的纵向围堰,其使用年限不能叠加计算;

(6)导流建筑物规模一栏中,堰高指挡水围堰最大高度,库容指堰前设计水位所拦蓄的水量,两者应同时满足。

导流建筑物的设计洪水标准是根据导流建筑物的级别和类型,根据表10选定,该表适用于洪水期,也适用于枯水期。

-6-

表10导流建筑物的洪水标准划分

3、坝体临时挡水度汛洪水标准

坝体施工期临时挡水度汛的洪水标准按表11选定。

11坝体施工期临时度汛洪水标准[重现期(年)]

4、导流泄水建筑物封堵与水库蓄水标准

(1)规范规定封堵的下闸设计流量采用时段5~10年重现期的月或旬平均流量。

封堵工程的设计标准为10~20年重现期。

(2)封堵后坝体度汛标准

当导流建筑物封堵后,大坝进入施工运行期,这时,坝体度汛按表12规定的标准选择。

表12导流泄水建筑物封堵后坝体度汛洪水标准[重现期(年)]

(3)水库蓄水标准

建议采用75%一85%保证率作为水库的蓄水标准。

二、确定导流方案和大坝施工分期,根据施工单位能力,粗定大坝施工控制进度

(一)施工导流方案

在选坝阶段,对枢纽施工导流进行多方案比较,其中土石坝方案采用隧洞导流方案,并建议上游土石围堰与坝体结合,以节省导流费用。

(二)确定大坝施工分期,粗定截流、拦洪、封孔、发电日期。

采用隧洞导流方案,土石坝的施工一般分四期进行。

第一期:

截流前,要完成导流隧洞工程,并做好截流准备工作。

第二期:

截流后,在围堰的保护下进行大坝基础工程施工(包括排水、基坑开挖及基础处理),然后进行大坝填筑,在梅雨、台风汛期到来之前将大坝抢筑到拦洪水位以上。

第三期:

拦洪以后继续填筑大坝到开始封孔蓄水。

-7-

第四期:

封孔后大坝继续升高直至坝顶设计高程。

二期工程是工程成败的关键,这一期工程量往往很大,要求较高的施工强度,以致超过施工单位的生产能力。

为了保证在施工单位生产能力范围内顺利完成拦洪任务,可以采用全断面、临时断面、围堰拦洪或采用分期围堰填筑部分坝体等方法(如表13所示),以保证安全拦洪度汛。

表13拦洪度汛方法

对来水量大,库容小的工程,封孔以后,水库很快被充满,宜在大坝建成后才能封孔蓄水,此时无第四期工程。

(三)确定截流和拦洪时间,然后根据截流到拦洪的天数扣除排水、基础开挖和处理时间,按粘土心墙填筑上升速度每天0.2~0.4m确定大坝可能达到的拦洪高程。

(四)大坝各期工程量计算

根据大坝分期按下列公式计算(梯形河谷适用)各期工程量(V)

H

?

L?

3b?

?

m1?

m2?

H?

?

l?

3b?

2?

m1?

m2?

H?

?

(1)6

式中:

V为计算部分坝体工程量,m3;L为计算部分坝体顶部长度,m;H为计算部分坝

V?

体高度,m;b为计算部分坝体顶宽,m;l为计算部分坝体底部长度,m;m1、m2分别为计算部分坝体上、下游边坡。

(五)计算大坝各期平均施工强度(Q)(粘土、砂砾料)

-8-

Q?

式中:

T为该期实际有效施工天数。

V

(2)T

按照各期施工强度大致均衡的原则,控制不均衡系数不超过1.5~2.0,并在施工单位生产力允许的范围内,修改分期方案和各期坝体尺寸,或各期的开挖完工日期,直到满意为止。

(六)确定封孔蓄水及发电日期

本电站的初始发电水位为80m,蓄水保证率要求75%以上,要求在2014年10月1日有一台机组发电。

一般来说,应在保证大坝安全的前提下,尽可能提早发电。

1、封孔日期的确定

根据初始发电水位,利用库容曲线求得相应的水库蓄水量,按照保证率的要求,用80%典型枯水年各月平均流量推断出封孔日期。

即此时封堵蓄水,可以保证到初定的发电日期,水库水位可以达到初始发电水位。

例如:

要求10.1发电,初始发电时库容发V,推算封孔蓄水日期可按表14进行。

表14

表中Vi为i月的来水总量、Vi?

为i月时下游要求的供水量。

由表可知,蓄水6个月才能达到相应于初始发电水位的存蓄量。

故推得封孔日期为4月的某一天。

本设计中,在封孔蓄水期内,下游用水由坝址下游支流汇入河道解决,下游来水全部蓄入水库。

2、大坝安全校核

封孔日期是以蓄枯水年水量保证如期发电来确定的,如果封孔以后所遇到的不是枯水

-9-

年而是丰水年,则库内水位上升很快,有利于发电,但势必威胁尚未修建到顶的大坝安全,因此,必须按丰水年来水量进行大坝安全校核。

校核标准按库容及下游安全而定,可按表15进行计算比较。

表中Vi为i月的来水总量,hi为i月底相应的库水位。

△hi为月初发生一次洪水(1%)所增高的水位,Hi为i月底大坝修建到的高程。

若Hi>hi+△hi+1,即认为大坝是安全的;否则认为有漫顶危险。

本设计中不考虑△hi的影响。

表15

如果校核结果,安全度太大,可以考虑提早发电,如不能满足安全要求,可采取下列措施,以保证大坝安全。

①提高大坝上升速度;②延迟封孔和发电;

③采用后期导流措施,利用永久或临时泄水建筑物控制上游水位。

(七)根据确定的截流、拦洪、封孔、发电日期和工程分期绘制大坝控制进度,如图2。

-10-

图2临时断面拦洪方案大坝施工控制进度

三、导流工程规划布置

需要决定的问题有:

导流隧洞的断面形式、尺寸、进出口底坎高程,洞线布置及相应的围堰形式、尺寸和平面布置,本应先拟出几个隧洞断面尺寸、不同的底坎高程和不同的布置方案,进行技术经济比较,然后确定最优的隧洞断面和进出口底坎高程。

限于时间,本设计要求完成一个方案的计算与分析,但应明确方案比较时应分析研究的问题:

(1)隧洞尺寸大小,底坎高程对拦洪水位及大坝合龙段施工的影响;

(2)隧洞尺寸、底坎高程对围堰及隧洞工程量的影响;(3)通航过筏条件对截流条件的影响。

(一)确定泄水建筑物断面型式和尺寸,并进行平面和立面布置。

l、计算拦洪水位

根据已定的拦洪坝高扣除安全超高2~3m,即为拦洪水位。

2、确定隧洞断面尺寸

(1)隧洞最大下泄流量计算

在工程水文学中,我们已经知道水库对洪水的调节作用。

按照隧洞的泄流条件和水库调节性能,根据洪峰过程线可以求得隧洞泄水过程线,其关系如图3所示,图中V为水库形成的最大库容,Q泄为相应于最大库容V时的隧洞最大下泄流量。

在已知洪水过程线和上游拦洪水位的条件下,若求得隧洞泄水过程线,就得出相应于拦洪水位时的隧洞最大下泄流量。

但泄水过程线需经调洪运算求得,计算工作量大。

为简化计算,曲线AB以直线代替,就可方便地计算出阴影部分面积所代表的库容V′,并与拦洪水位相应库容V比较,如V′=V,由AB直线段为所拟的隧洞泄水过程线,Q泄为所求隧洞的最大下泄流量。

如V′≠V,则另需假定AB线位置重算。

-11-

T

图3

计算方法:

①如图3所示,在估计所求B点附近,任意选定Bl、B2、B3点,通过Bl、B2、B3向A点方向作三条直线,并与洪峰过程线相切。

②计算相应直接ABi与洪峰过程线所包围的面积(即相应库容)和相应的隧洞最大下泄量,并绘制Q~y关系曲线,如图4所示。

③根据拦洪水位相应库容V,在Q~V曲线上,找出相应的隧洞最大下泄流量。

(2)泄放最大流量时的隧洞流速计算。

大坝拦洪时,隧洞泄放最大流量,一般为压力流,

其流速按有压流公式计算:

V?

1

?

f2g(H0?

hp)?

m2g(H0?

hp)

(3)

式中:

m=0.85;V为洞里平均流速;H0为隧洞进口计算水深

(在洞线布置之前用拦洪水位代之);hp为隧洞出口底坎以上

水深,在这里,可根据隧洞最大下泄量,从坝址水位流量关

系曲线上查得。

(3)隧洞过水断面面积计算

W?

3、隧洞断面型式、尺寸及布置

(1)隧洞断面型式及尺寸Q泄(4)V

导流隧洞的断面型式有圆形、马蹄形和城门洞形,其中

城门洞形最普遍,这种型式开挖方便,有利于泄流和截流,

本工程采用城门洞形,其尺寸如图5,根据公式

W=B?

2?

8B2确定隧洞断面尺寸。

(2)隧洞布置

隧洞路线应结合地形、地质条件选定,一般长度应尽可

能短,但必须考虑进、出口与上、下游围堰之间保持20~50m

的距离(根据水深及河床覆盖层厚度确定),防止水流冲刷

围堰。

隧洞轴线尽可能布置成直线,当转弯时,其转弯半径

不少于5B。

导流洞的底面高程一般布置在最低水位以下一定高程(通过方案比较确定),布

-12-

置应注意:

①使截流方便——低;

②航运过水要求——吃水深,净空,流速小于3~6m/s;③隧洞施工方便(出渣方便、排水容易)——高;

④过流平顺,进、出口无明显跌落,水面衔接条件好,便于通航过木。

隧洞底坡一般为0.2%~0.5%,也可以布置成平底坡,视河床纵坡而定。

为了保证水流平顺,隧洞进出口各有一定长度的直线段和明渠段。

在进口应设置喇叭段。

封孔闸门布置于洞口,当洞口宽度超过6m时,应布置中墩,以减少封孔闸门跨度。

出口明渠段可以扩大口门,反坡与原河道相接,其出口轴线与河床水流轴线交角最好小于30°。

隧洞进、出口顶部岩石覆盖层厚度一般不小于1.0~2.0倍隧洞净宽,视地质条件而定。

(二)汛期大坝拦洪校核

1、根据已定的隧洞尺寸和泄流条件,经过调洪演算确定上游拦洪水位,以检查此时的坝面高程是否能安全拦洪。

计算方法:

(1)明流按下式计算:

VVV

h1?

h2?

2?

1?

(2?

i)L(5)

2g2gCR

式中:

h1为进口洞内水深;h2为出口洞内水深;V1为进口洞内流速;V2为出口洞内流速;

22

2

V=(V1?

V2)/2;C为平均谢才系数;R为平均水力半径;L为隧洞长度。

计算步骤:

(a)判别出口流态

淹没出流:

hk?

h下;h2?

h下;自由出流:

hk?

h下;h2?

hk。

其中:

h下为出口下游水深;hk为临界水深,矩形过水断面时

aq2

(6)hk?

g

(b)确定h2后,假定h1用公式(5)列表试算

表16

VV

Z?

12?

0

2g(7)2g?

22

2

-13-

式中:

?

为流速系数,取0.8~0.9;V0为上游行进流速,当V0?

1m/s时,流速水头很小,式(7)中第二项可略去。

(d)计算上游水位(?

上)

?

上?

进口坎高程?

h1?

Z(8)

(2)有压流按下式计算:

V2V2

H0?

h2?

(1?

?

)?

(2?

i)L(9)2gCR

其中:

h2为出口计算水深,自由出流时h2?

0.85D,淹没出流时:

h2?

h下;?

为局部损

1失系数之和,进口采用喇叭口时?

进=0.25;C?

R6,谢才系数,采用混凝土衬砌时n

n=0.014,不衬砌时n=0.035;其它符号参阅相关水

力学资料。

上游水位:

?

上=进口坎高程+H0

计算时,假定几个隧洞下泄流量,分别计算出

相应的上游水位,画出无压和有压部分的泄流量与

水位的关系曲线并以光滑曲线连接该段曲线,以代

替半有压流曲线,如图6。

2、通过调洪运算,确定梅雨汛期拦洪水位。

依据:

①库容曲线;

②洪峰流量过程线;

③坝址水位流量关系曲线;

④隧洞泄水能力曲线。

计算方法:

①列表数算法;②简单图算法。

A、列表数算法

列表数算法也称双曲辅助线法,根据水量平衡方程绘出双曲辅助线,然后列表计算。

B、简易图算法

计算原理及思路同本指示书的《隧洞最大下泄量计算》

部分。

计算步骤如下:

①假定三条隧洞泄水过程线ABl、AB2、AB3(如图3);

②求出相应的库容V1、V2、V3和下泄流量Q1、Q2、

Q3;

③根据V1、V2、V3在库容曲线上得出相应的上游水位

Hl、H2、H3;

④在绘有隧洞泄流能力曲线Ll的Q~H坐标图上,绘出相应的点P1(Ql,H1)、P2(Q2,

-14-1

H2)、P3(Q3,H3);

⑤过P1、P2、P3点绘曲线L2交Ll于P点,则对应于P点的泄流量Q为拦洪时隧洞最大下泄流量,相应的水位H即为所求拦洪水位,见图7。

3、大坝安全校核

根据大坝施工控制进度所确定的梅雨汛前的大坝高程?

1与拦洪高程H进行比较,若?

1?

?

h?

H,则安全,反之不安全,其中,?

h为安全超高。

如果校核结果为不安全,可改变进度或采用局部加高坝体拦洪等措施。

(三)围堰主要尺寸、型式及布置

1、挡水时段的确定

本设计采用枯水期挡水围堰围护基坑修筑大坝。

围堰的任务在于保护基坑内工程施工,直到坑内坝体高出水面,所以围堰的挡水时段决定于基坑内基础处理工程量,坝体施工速度及水文变化情况。

围堰的挡水时段可用图解法决定(略),为简化起见,设计者可选定一个适当的枯水期作为围堰的挡水时段。

2、围堰顶高程的确定

在围堰挡水时段内,围堰应挡住可能发生的最大洪水,故以5%频率该时段的最大洪峰为围堰的设计流量。

围堰顶高程由该设计流量时的上游水位和安全超高确定。

发生设计洪水时的上游水位即为围堰拦洪水位,下游围堰的顶高程?

下=下游水位+超高,下游水位是发生设计洪峰流量、隧洞下泄最大流量时的下游水位,根据流量水位关系曲线得出。

3、围堰的型式

围堰的型式参看教材,本设计建议上、下游都采用砂砾石粘土斜墙围堰,且上游围堰作为坝体的一部分。

4、围堰的断面尺寸

要求确定围堰顶宽,边坡尺寸,防渗结构尺寸及其与基础的连接型式。

本工程河床覆盖层较薄,水深不大,应以防渗体与基岩直接连接较好。

注意点:

①围堰的水下部分尺寸应加大;

②上游围堰粘土斜墙防渗体应在坝体以外,下游围堰在施工后期应予拆除。

5、围堰的平面布置

要求按比例在地形图上正确画出围堰的平面布置图,在大坝断面图上面出围堰的剖面,以反映大坝与围堰的相互位置。

-15-

第二部分主体工程施工

一、土石坝施工

(一)施工强度计算

列表计算表17

(二)土方施工机械的选择及数量计算

1、常用土方施工机械的适用性及可供选择的型号规格,见表18。

表18

-16-

2、土石坝施工作业机械化方案选定

根据工程量、施工强度、料场条件、运输道路、上坝条件、坝面作业等选择合理的机械化施工方案。

本工程各种作业可供采用的机械化方案如下:

设计者根据表19所列的机械化方案和施工单位拥有的机械选择一个粘土和砂砾的挖运填施工机械化方案。

3、主要机械数量计算

A、确定机械的生产率

机械生产率可采用定额指标(机械生产定额列于附录中)或计算方法确定。

本设计要求粘土心墙施工机械生产率用查定额指标的方法确定;砂砾坝壳施工机械的生产率用计算法确定。

(1)周期运行机械(单斗式挖掘机、自卸汽车等)生产率;生产率(以坝上压实方为标准)计算式为:

P?

60?

8qKvKtKp(m3/班)(10)t

式中:

q为土斗或车箱几何容积(m3);Kv为土斗或车箱的充盈系数(表20);Kt为时间利用系数(见表21);Kp为体积换算系数(见表22);t为机械运行一次的循环时间。

t?

t装?

t卸?

t运?

t空回

式中:

t运、t空回随运距或偏转角而变,可以用下式求得:

t运?

t空回?

(11)L(12)V

式中:

L为转角或运距;V为转速或平均车速,对于自卸汽车采用20~25km/h。

t装、t卸分别为装土和卸土时间,可以按经验确定,对于自卸汽车:

t装?

n?

t'

式中:

n为挖土机装满一车的斗数;t′为挖土机循环工作时间(见表23)。

t卸可取1~2.5分钟,包括调车、等待时间。

-17-

表20开挖机械的充盈系数表

注:

如用公式(10)计算汽车生产率时,充盈系数近似取l。

表21施工机械时间利用系数表

注:

①施工条件指地形、天气、施工工作面、地表排水、施工方法、程序、工程规模等。

②管理条件:

计算管理好坏、操作人员水平、机械化等情况等。

③本设计中的施工条件,管理水平均可选良好。

表22土壤体积换算系数表

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1