反应动力学方法.docx

上传人:b****5 文档编号:8436196 上传时间:2023-01-31 格式:DOCX 页数:18 大小:257.01KB
下载 相关 举报
反应动力学方法.docx_第1页
第1页 / 共18页
反应动力学方法.docx_第2页
第2页 / 共18页
反应动力学方法.docx_第3页
第3页 / 共18页
反应动力学方法.docx_第4页
第4页 / 共18页
反应动力学方法.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

反应动力学方法.docx

《反应动力学方法.docx》由会员分享,可在线阅读,更多相关《反应动力学方法.docx(18页珍藏版)》请在冰豆网上搜索。

反应动力学方法.docx

反应动力学方法反应动力学方法基本方程热分析动力学热分析动力学对于常见的固相反应来说,其反应方程可以表示为A(s),B(s)C(g)

(1)其反应速度可以用两种不同形式的方程表示:

d。

微分形式kf()

(2)dt和积分形式G()=kt(3)式中:

at时物质A已反应的分数;t时间;k反应速率常数;f(a)反应机理函数的微分形式;G(a反应机理函数的积分形式。

由于f(a)和G(a)分别为机理函数的微分形式和积分形式,它们之间的关系为:

11fC)(4)G2)dG(。

)/d。

k与反应温度T(绝对温度)之间的关系可用著名的Arrhenius方程表示:

(5)k二Aexp(-E/RT)式中:

A表观指前因子;E表观活化能;R通用气体常数。

方程

(2)(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式:

T=Topt(6)即:

dT/dt二(3式中:

ToDSC曲线偏离基线的始点温度(K);3加热速率(Kmin-1)。

于是可以分别得到:

非均相体系在等温与非等温条件下的两个常用动力学方程式:

d-/dt=Aexp(-E/RT)f(a)(等温)(7)dAfG)exp(-E/RT)(非等温)(8)dT3动力学研究的目的就在于求解出能描述某反应的上述方程中的对于反应过程的DSC曲线如图所示。

在DSC分析中,a值等于Ht/H,这里Ht为物质A在某时刻的反应热,相当于DSC曲线下的部分面积,H。

为反应完成后物质A的总放热量,相当于DSC曲线下的总面积。

微分法2.1Achar、Brindley和Sharp法:

对方程dAfC)exp(-E/RT)进行变换得方程:

dT(3(3d:

Aexp(-E/RT)(9)f(:

)dT对该两边直接取对数有:

3d。

ElnlnA(10)f(:

)dTRT由式(11)可以看出,方程两边成线性关系。

通过试探不同的反应机理函数、不同温度T时的分解百分数,进行线性回归分析,就可以试解出相应的反应活化能E、指前因子A和机理函数f(a).2.2Kissinger法nfC)=(1-),相应E/RTndd:

nde-E/RTd

(1)_l厂厂|A(1_)+AedtIdt.dtdt一一在热分析曲线的峰顶处,其一阶导数为零,即边界条件为:

将上述边界条件代入(13)式有:

Kissinger在动力学方程时,假设反应机理函数为的动力学方程表示为:

Kissinger研究后认为:

”1_宀)心与B无关,其值近似等于1,因此,从方程(16)可变换为:

RT对方程(15)两边取对数,得方程(18),也即Kissinger方程:

线,从直线斜率求Ek,从截距求Ak,其线性相关性一般在0.9以上2.3两点法Kissinger法是在有假定条件下得到的简化方程。

如果我们不作任何假设,只是利用数学的方法进行,可以得到两点法。

由方程

(2)、(5)知二AeRTfC)dt方程(19)两边对T微分,得adldt.T寺,口北dT我们得到第一个方程:

RT2p(20)方程(20)两边对T微分,得22A罟E-2ERTfC)fC)eRT;4(21)BRT这相当于对DSC曲线求二阶导,为的是求DSC曲线的拐点。

在DSC曲线的拐点处,我们有边界条件:

d件dtdT将该条件代入方程(22),从而得到第二个方程聋聋3AERO_E/RT.)ejf()e+BRTi程如下:

EEeRT2f:

m式中:

222f:

mRTmT:

if:

R2Tm42f:

m-TiRTT通过解方程就可求出非等温反应动力学参数E和A的值。

在该方法中,只需要知道升温速率B,拐点的温度Ti、分解百分数a,峰顶的温度Tm、分解百分数術,就可以试算不同的f(a)以求解出对应于该f(a)时的活化能E值、指前因子A值。

三积分法对于积分法对于积分法)G()二二kt则由方程(8)求积分得ad。

ATATGC)。

二T0exp(-E/RT)dT二0exp(-E/RT)dTf(a)33AE_uu一eAEAE_ue:

2dup(u)=(u)(23)(3Ru3R3Ruexp(-u)E式中:

式中:

p(u)(u);u二二uRT对P(u)的不同处理)构成了一系列的积分法方程,其中最著名的方法和方程如下:

3.1Ozawa法通过对方程(23)变换,得Ozawa公式:

(AEElogp=log1-2.315-0.4567(24)IRG)丿RT方程(24)中的E,可用以下两种方法求得。

方法1:

由于不同pi下各热谱峰顶温度TPi处各a值近似相等,因此可用1“logp”成线性关系来确定E值。

令:

TZi=logp1/Tp(i二二12丄)丄)Ea二二-0.4567RAEb=log2.315RG)这样由式(24)得线性方程组乙二乙二ayib(i=1,2,L)解此方程组求出a,从而得E值。

Ozawa法避开了反应机理函数的选择而直接求出E值,与其它方法相比,它避免了因反应机理函数的假设不同而可能带来的误差。

因此往往被其它学者用来检验由他们假设反应机理函数的方法求出的活化能值,这是Ozawa法的一个突出优点。

3.2Phadnis法2(25)RTdGC)fC):

EdT2da该方程由Phadnis等人提出。

对于合适的机理函数,G)f(?

)与T成线性dT关系,由此求出E值,但无法求出A值。

3.3Coats-Redfern近似式Coats-Redfern近似式:

取方程(23)右端括号内前二项,得一级近似的第一种表达式式中:

Pcr(u)u2(1-方程(4-4)和(4-5)右端第一项几乎都是常数,当心时,|n1一(1八厂-T(1-n)图,而n.1时,ln_ln(i)1对一作图,都能得到一条直线,其斜率为T正确的n值而言)。

该法无需对p(u)作近似处理,可以证明,对于一定的E值,-logp(u)与1/T为线性关系,并可表达为:

a-logp(u)=u_T而且,E对a也是线性关系,可表达为:

a=ybE于是有y+bE-logp(u)二二uT虽然u对E不是线性关系,但是logu对logE是线性关系,即:

logu二二logAclogE于是有y+bE-logp(u)二二AET借助于附录A中列出的logp(u)u表计算出相应的常数后,代入上式,得:

式中:

E活化能,kcal/molT温度,K上述方程称MacCallum-Tanner近似式。

4.计算结果判据提出的选择合理动力学参数及最可几机理函数的五条判据是:

(1)用普适积分方程和微分方程求得的动力学参数E和A值应在材料热分解反应动力学参数值的正常范围内,即活化能E值在80250kJ-mol1之间,指前因子的对数(lgA/s-1)值在730之间;

(2)用微分法和积分法计算结果的线性相关系数要大于0.98;(3)用微分法和积分法计算结果的标准偏差应小于0.3;(4)根据上述原则选择的机理函数f(a)应与研究对象的状态相符;(5)与两点法、Kissinger法、Ozawa法和其它微积分法求得的动力学参数值应尽量一致。

函数号函数名称机理抛物线法则Valensi方程枳分形式G(a)一维扩散,1D,D1减速a形a-t曲线二维扩散,园柱形对鳥:

(1-:

)ln(1-?

)称,2D,D2,减速形a-t曲线I-ln(1_:

).FJander方程二维扩散,2D,n=12Jander方程二维扩散,2D,n=21_|Jander方程三维扩散,3D,nJ2三维扩散,球形对称,3D,D3,减速形a曲线,n=2三维扩散,球形对称,3D,D4,减速形a曲线反Jander方程三维扩散,3DJander方程G-B方程(*)函数号函数名称-t1-(1-:

)36(1-:

)31一(1-.:

)3JJ122-11_(1_)31123(1一:

)一(12121-t(_13彳1(1:

;)3(1匕)3-12-机理积分形式G(a)微分形式f(a)9Z.-L.-T.方程(*)三维扩散,3D10Avrami-Erofee随机成核和随后生长,A4,v方程1S形a-t曲线,n=,4m=411Avrami-Erofee随机成核和随后生长,A3,v方程1S形a-t曲线,n二一,3m=312Avrami-Erofee随机成核和随后生长,v方程2n二_13Avrami-Erofee5随机成核和随后生长,A2,v方程-1f(1-:

)3-13-(1241)3(1-)3-11Tn(1-)I44(1-3-)Lln(1-)141Lln(1-)I33(1-2-)Lln(1-:

)I32Lln(1-:

)L5(123-)丨-ln(1-)L1Lln(1-)L2(1-1-)Lln(1-)L1S形a-t曲线,n,m=2214Avrami-Erofeev方程随机成核和随后生长,2n=21-ln(1-:

)I332(1_:

)丨_ln(11-:

)I315Avrami-Erofee3随机成核和随后生长,1-ln(13-:

)I44(1_)丨_1n(11I4v方程3n二一A316Mample单行4随机成核和随后生长,假设-ln(1-)1-Ct法则,一级每个颗粒上只有一个核心,A1,F1,S形a-t曲线,n=1,m=117Avrami-E随机成核和随后生长,1-ln(13-:

)I22(1_:

)I_ln(11-:

jl_2rofeev方程33n二一2函数号函数名称机理积分形式G(a)微分形式f(a)18Avrami-Erofeev随机成核和随后生长,n=2Lln

(1)(1-:

)Lln(1-:

).F方程219Avrami-Erofeev随机成核和随后生长,n=3Lln(1-)1nJMA(n)45幕函数法则P1,加速型a-1曲线用1/nn(:

.)

(2)/n*,Ginstling-Brounstein方程*,Zhuralev-Lesokin-Tempelman方程*,Prout-Tompkins方程*,?

estok-Berggren方程*,Johnson-Mehl-Avrami方程注:

函数No.1和27称谓不同,形式相同

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 文学研究

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1