古塔的变形高教杯数学建模c题论文答案.docx

上传人:b****2 文档编号:839588 上传时间:2022-10-13 格式:DOCX 页数:40 大小:286.10KB
下载 相关 举报
古塔的变形高教杯数学建模c题论文答案.docx_第1页
第1页 / 共40页
古塔的变形高教杯数学建模c题论文答案.docx_第2页
第2页 / 共40页
古塔的变形高教杯数学建模c题论文答案.docx_第3页
第3页 / 共40页
古塔的变形高教杯数学建模c题论文答案.docx_第4页
第4页 / 共40页
古塔的变形高教杯数学建模c题论文答案.docx_第5页
第5页 / 共40页
点击查看更多>>
下载资源
资源描述

古塔的变形高教杯数学建模c题论文答案.docx

《古塔的变形高教杯数学建模c题论文答案.docx》由会员分享,可在线阅读,更多相关《古塔的变形高教杯数学建模c题论文答案.docx(40页珍藏版)》请在冰豆网上搜索。

古塔的变形高教杯数学建模c题论文答案.docx

古塔的变形高教杯数学建模c题论文答案

2013高教社杯全国大学生数学建模竞赛

承诺书

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

 

我们参赛选择的题号是(从A/B/C/D中选择一项填写):

C

我们的参赛报名号为(如果赛区设置报名号的话):

所属学校(请填写完整的全名):

参赛队员(打印并签名):

1.

2.

3.

指导教师或指导教师组负责人(打印并签名):

 

日期:

年月日

 

 

 

 

 

赛区评阅编号(由赛区组委会评阅前进行编号):

 

2013高教社杯全国大学生数学建模竞赛

编号专用页

 

赛区评阅编号(由赛区组委会评阅前进行编号):

 

赛区评阅记录(可供赛区评阅时使用):

 

 

全国统一编号(由赛区组委会送交全国前编号):

 

全国评阅编号(由全国组委会评阅前进行编号):

题目:

古塔的变形

摘要

古塔是展现中国古代悠久历史的文化载体,是我国古代具有代表性的建筑,它不仅蕴含了丰富的历史信息还见证了古代建筑师的建筑之精妙。

本文针对古塔长时间承受自重和外力作用引起的组合变形问题,采用数据处理、几何分析及曲线拟合的方法,利用matlab等数学软件编程、计算,给出了确定古塔各层中心位置的通用方法,根据所给的各次测量数据计算出古塔各层的中心坐标,分析了该塔的倾斜、弯曲、扭曲等变形情况对变形趋势做了预测。

针对问题1,我们首先要根据这几年来四次古塔的数据变化情况,用建模软件MATLAB制作成模型图,用数学建模中拟合的方法来画出塔的基本形状,再确定古塔每层的中心点,建立中心点拟合线方程模型,观察是否有倾斜、扭曲、变形等情况。

针对问题2,古塔倾斜的原因主要与日光照射、地基活动有关。

首先朝向阳面的地基水分较少,阴面的地基水分较多,于是1万多吨的塔,开始向水分较多,地基松软的方向倾斜。

另外大量的地下水开采影响了地基的稳固,而古塔附近的铁路运输,也会造成震动。

而且,受到地基的不均匀沉降、地震、大风等影响,都会有可能倾斜等变形情况。

针对问题3,根据管理部门委托的测绘公司的数据表来看,古塔每年都以很小的角度在偏移,由于各种人为或者自然原因,使得古塔慢慢的倾斜为斜塔,斜塔并不一定都会倒塌,只要塔的重心线(通过重心点所引的垂直线)还在塔的底面积范围内,塔就是安全的。

因此纠偏要根据每座塔的具体情况而定。

且一般来说,有些塔在倾斜的过程中,原本松软的地基会被渐渐压实,然后与倾斜角度构成新的平衡,便就此稳定下来。

关键词:

古塔组合变形倾斜弯曲扭曲中心位置变形趋势

一问题复述

古塔是有着特定的形式和风格的东方传统建筑,是中国五千年文明史的载体之一,被誉为中国古代杰出的高层建筑。

但由于存在时间久远,受各方面影响,古塔的可能会发生变形。

文物部门为了更好地保护古塔,必须对其进行适时的观测,确定各种变形量,根据变形量,预测古塔的变形趋势,最后制定必要的保护措施。

请根据附件1提供的4次观测数据,讨论以下问题:

1、给出确定古塔各层中心位置的通用方法,并列表给出各次测量的古塔各层中心坐标。

2、分析该塔倾斜、弯曲、扭曲等变形情况。

3、分析该塔的变形趋势。

二问题的分析

本文研究的是古塔的变形问题。

在给出了的一个古塔实例以及相应数据(附件1,该实例古塔的4次观测数据)的条件下,我们需要用建立该古塔的各层中心位置的通用方法,且列表给出各次测量的古塔各层的中心位置。

并进一步分析该古塔倾斜、弯曲、扭曲等变形情况,最后分析该古塔的变形趋势。

在问题1中,我们需要确定古塔各层中心位置,并列表给出各次测量的古塔各层中心位置。

首先,我们假设各测量点都是选取得科学合理的位置,都是围绕中心点的,并且同一层测量点大致在同一平面上,由已知数据(附件1)也可以看出它们是大致在同一平面上。

那么,我们由已知条件知道每层给出的各测量点的数据,我们通过画三维图形可以看出,那近似于一个的多边形,所以我们就可以把问题转变为求多边形的中心位置,然后记录各个中心位置坐标数据。

在问题2中,我们需要分析该塔倾斜、弯曲、扭曲等变形情况。

根据问题1中求得的各层的中心位置坐标,然后将各层的中心位置坐标,接连起来,观察它。

理论上正常古塔的中心位置坐标连线应该大致是一条垂直于X轴和Y轴平行Z轴的直线。

如果中心位置坐标连线,还是直线但不平行于Z轴了,说明该古塔发生了倾斜,如果中心位置坐标连线不是一条直线,而是一条有一个弧度的曲线,那么说明该古塔发生了弯曲,如果中心位置坐标连线不是一条直线,而是一条有多个弧度的曲线,那么说明该古塔发生了扭曲。

在问题3中,我们分析该塔的变形趋势时,通过分析每一个中心点的变化趋势,来判断整个塔的变形趋势,与预测古塔以后可能会发生的变形情况。

三模型假设

1、假设倾斜只受地基的沉降影响,忽略其他因素。

2、假设各测量点都是选取的都是科学合理的位置。

3、假设每层的测量点都是围绕着这一层的中心点。

4、假设同一层测量点都大致在同一平面上。

5、假设各层测量点构成的几何图形的中心是与这一层的中心位置相重合的。

6、假设测量点的位置都是古塔上固定的位置。

 

四符号说明

符号

符号说明

第层中心;

层数;

测量点标记;

轴坐标;

轴坐标;

轴坐标;

 

拟合线轴坐标;

拟合线轴坐标;

拟合线轴坐标;

第层中心的轴坐标;

第层中心的轴坐标;

第层中心的轴坐标;

测量点数

时间

时间差

坐标差

坐标差

坐标差

真实值与计算的近似值之差

真实值与计算的近似值之差

方程中的参数

第层的方程参数

五建立数学模型

1、确定古塔各层中心位置的通用方法,并列表给出古塔各层中心坐标

根据几何中心计算方法,我们可以得出计算各层中心位置的通用方法。

即:

我们把每层的8个测量值,分别求x,y,z的均值,得到的坐标就是每层的中心位置。

表1:

1986年各层中心位置

楼层

中心位置坐标

x/m

y/m

z/m

1

566.6648

522.7105

1.7874

2

566.7196

522.6684

7.3202

3

566.7735

522.6273

12.7552

4

566.8161

522.5944

17.0783

5

566.8621

522.5591

21.7205

6

566.9084

522.5244

26.2351

7

566.9467

522.5081

29.8369

8

566.9843

522.4924

33.3509

9

567.0218

522.4764

36.8549

10

567.0569

522.4230

40.1721

11

567.1045

522.4230

44.4409

12

567.1518

522.3836

48.7119

13

567.0850

522.7403

52.8343

塔顶

567.2473

522.2437

55.1232

表1数据分析:

我们可以从表中发现,中心位置的x轴坐标,在逐渐增加,而y轴坐标在逐渐减少。

而正常的塔,理论而言,x轴和y轴坐标因该是不变的。

结论:

说明该古塔发生了倾斜变形。

表2:

1996年各层中心位置

中心位置坐标

x/m

y/m

z/m

1

566.6650

522.7102

1.7830

2

566.7205

522.6674

7.3146

3

566.7751

522.6256

12.7508

4

566.8183

522.5922

17.0751

5

566.8649

522.5563

21.7160

6

566.9118

522.5210

26.2295

7

566.9506

522.5042

29.8322

8

566.9884

522.4881

33.3454

9

567.0265

522.4714

36.8482

10

567.0620

522.4572

40.1676

11

567.1102

522.4173

44.4354

12

567.1578

522.3775

48.7074

13

567.0912

522.7340

52.8300

塔顶

567.2543

522.2366

55.1198

表2数据分析:

我们可以从表中发现,中心位置的x轴坐标,在逐渐增加,而y轴坐标在逐渐减少。

而正常的塔,理论而言,x轴和y轴坐标因该是不变的。

结论:

说明该古塔发生了倾斜变形。

表3:

2009年各层中心位置

中心位置坐标

x/m

y/m

z/m

1

566.7268

522.7015

1.7645

2

566.7640

522.6693

7.3090

3

566.8001

522.6384

12.7323

4

566.8293

522.6132

17.0697

5

566.8603

522.5866

21.7094

6

566.9471

522.5342

26.2110

7

566.9792

522.5123

29.8246

8

567.0305

522.4797

33.3398

9

567.0816

522.4466

36.8438

10

567.1370

522.3937

40.1611

11

567.1799

522.3547

44.4326

12

567.2225

522.3160

48.6998

13

567.2712

522.2715

52.8183

塔顶

567.336

522.2148

55.091

表3数据分析:

我们可以从表中发现,中心位置的x轴坐标,在逐渐增加,而y轴坐标在逐渐减少。

而正常的塔,理论而言,x轴和y轴坐标因该是不变的。

结论:

说明该古塔发生了倾斜变形。

表4:

2011年古塔各层中心位置坐标

中心位置坐标

x/m

y/m

z/m

1

566.7270

522.7014

1.7632

2

566.7462

522.6690

7.2905

3

566.8004

522.6387

12.7269

4

566.8297

522.6427

17.0520

5

566.8610

522.5860

21.7039

6

566.9478

522.5335

26.2045

7

566.9800

522.5115

29.8170

8

567.0313

522.4788

33.3366

9

567.0825

522.4457

36

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1