生产实习报告.docx

上传人:b****5 文档编号:8384735 上传时间:2023-01-30 格式:DOCX 页数:7 大小:311.69KB
下载 相关 举报
生产实习报告.docx_第1页
第1页 / 共7页
生产实习报告.docx_第2页
第2页 / 共7页
生产实习报告.docx_第3页
第3页 / 共7页
生产实习报告.docx_第4页
第4页 / 共7页
生产实习报告.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

生产实习报告.docx

《生产实习报告.docx》由会员分享,可在线阅读,更多相关《生产实习报告.docx(7页珍藏版)》请在冰豆网上搜索。

生产实习报告.docx

生产实习报告

 

 

题目:

生产实习报告

学生姓名:

马亮

学院:

理学院

班级:

力学13-2

指导教师:

姜爱峰

2016年7月1日

 

生产实习报告

1.实习目的

通过观察和接触实际的建筑物,了解建筑的整体布局以及建筑局部详细的构造。

将所学知识和实习内容互相验证,并对一些实际问题加以分析和讨论,让我们对建筑结构的构造有一个良好的感性认识,分析建筑结构的构造,充实和扩大自己的知识面,培养综合应用的能力,为以后课程以及日后走上工作岗位打下基础。

同时,使我们对力学专业的工作性质有一个初步的了解,培养我们每个人对本专业的热爱,强化同学们的事业心和责任感,巩固专业思想。

 

2.实习时间

2016年7月1日

3.实习地点

呼和浩特市新城区三合村

4.实习安排

上午9点出发,骑车前往考察地点,9:

30到达,随后在小区内部观察楼体建筑,多个地点抽样观察内部详细结构,记下相关数据和专业性构架,观察三个小时回到学校。

5.实习内容

让我们从实践中对这门自己学习的专业获得一个感性认识,为今后专业课的学习打下坚实的基础,为今后书本与实践的结合埋下伏笔。

实习中,将所学知识和实习内容互相验证,并对一些实际问题加以分析和讨论,面对困惑向带队老师请教,使我自己对工程力学与棚户改造和建筑工程的密切联系有一个良好的认识,了解专业概况,为后续专业理论知识的学习奠定一个良好的基础。

实习过程:

7月1号,我们的实习地点是新城区三合村,参观了三合村的棚户区改造工程和集中供热扩建工程,在这里通过老师一些生动的描述和贴切的比喻,我对建筑中的一些结构有了清晰地印象和客观地认识。

地基是直接承受建筑物荷载影响的那一部分地层。

基础是将建筑物承受的各种荷载传递到地基上的下部结构!

根据埋深不同分浅基础和深基础

浅基础一般指基础埋深小于基础宽度或深度不超过5m的基础。

1、独立基础:

也叫“单独基础”,最常用的是柱下基础。

2、条形基础:

条形基础是墙下最常用的一种基础形式,当柱下独立基础不能满足要求时,也可以使用条形基础。

故按上部结构的的形式,可以将条形基础分为:

a、“墙下条形基础”;b、“柱下条形基础”;c、“十字交差钢筋混凝土条形基础”。

若是相邻两柱相连,又称“联合基础”或“双柱联合基础”。

3、筏板基础:

按其构造形式可以分为“梁板式”和“平板式”。

4、箱型基础:

由钢筋混凝土底板、顶板和纵横交错的内外隔墙组成。

具有很大的空间刚度和抵抗不均匀沉降的能力,抗震性能好,且顶板与底板之间的空间可以做地下室。

5、壳体基础:

其现阶段主要用于筒形构筑物的基础。

深基础一般指基础埋深大于基础宽度且深度超过5m的基础。

深基础是埋深较大,以下部坚实土层或岩层作为持力层的基础,其作用是把所承受的荷载相对集中地传递到地基的深层,而不像浅基础那样,是通过基础底面把所承受的荷载扩散分布于地基的浅层。

因此,当建筑场地的浅层土质不能满足建筑物对地基承载力和变形的要求,而又不适宜采用地基处理措施时,就要考虑采用深基础方案了。

深基础有桩基础、墩基础、地下连续墙、沉井和沉箱等几种类型。

桩基础由基桩和联接于桩顶的承台共同组成。

若桩身全部埋于土中,承台底面与土体接触,则称为低承台桩基;若桩身上部露出地面而承台底位于地面以上,则称为高承台桩基。

建筑桩基通常为低承台桩基础。

高层建筑中,桩基础应用广泛。

墩基的适用范围:

埋深大于3m、直径不小于800mm、且埋深与墩身直径的比小于6或埋深与扩底直径的比小于4的独立刚性基础,可按墩基进行设计。

墩身有效长度不宜超过5m。

墩基础多用于多层建筑,由于基底面积按天然地基的设计方法进行计算,免去了单墩载荷试验。

因此,在工期紧张的条件下较受欢迎。

地下连续墙是远方基础工程在地面上采用一种挖槽机械,沿着深开挖工程的周边轴线,在泥浆护壁条件下,开挖出一条狭长的深槽,清槽后,在槽内吊放钢筋笼,然后用导管法灌筑水下混凝土筑成一个单元槽段,如此逐段进行,在地下筑成一道连续的钢筋混凝土墙壁,作为截水、防渗、承重、挡水结构。

本法特点是:

施工振动小,墙体刚度大,整体性好,施工速度快,可省土石方,可用于密集建筑群中建造深基坑支护及进行逆作法施工,可用于各种地质条件下,包括砂性土层、粒径50mm以下的砂砾层中施工等。

适用于建造建筑物的地下室、地下商场、停车场、地下油库、挡土墙、高层建筑的深基础、逆作法施工围护结构,工业建筑的深池、坑;竖井等。

沉井基础是以沉井法施工的地下结构物和深基础的一种型式。

是先在地表制作成一个井筒状的结构物(沉井),然后在井壁的围护下通过从井内不断挖土,使沉井在自重作用下逐渐下沉,达到预定设计标高后,再进行封底,构筑内部结构。

广泛应用于桥梁、烟囱、水塔的基础;水泵房、地下油库、水池竖井等深井构筑物和盾构或顶管的工作井。

沉箱是一个有顶无底的箱形结构(即沉箱工作室)。

顶盖上装有气闸,便于人员、材料、土进出工作室,同时保持工作室的固定气压。

施工时,借助输入工作室的压缩空气,以阻止地下水渗入,便于工人在室内挖土,使沉箱逐渐下沉,同时在上面加筑混凝土。

当其沉到预定深度后,用混凝土填实工作室,作为重型构筑物(如桥墩、设备)的基础。

圈梁是砌体结构房屋中,在砌体内沿水平方向设置封闭的钢筋砼梁,以提高房屋空间刚度、增加建筑物的整体性、提高砖石砌体的抗剪、抗拉强度,防止由于地基不均匀沉降、地震或其他较大振动荷载对房屋的破坏。

在房屋的基础上部的连续的钢筋混凝土梁叫基础圈梁,也叫地圈梁(DQL);而在墙体上部,紧挨楼板的钢筋混凝土梁叫上圈梁。

基坑是指为进行建筑物(包括构筑物)基础与地下室的施工所开挖的地面以下空间。

建筑也是一门和力学息息相关的专业,建筑力学是为建筑学专业的学生开设的一门理论性、实践性较强的技术基础课,旨在培养学生应用力学的基建筑力学本原理,分析和研究建筑结构和构件在各种条件下的强度、刚度、稳定性等方面问题的能力。

建筑力学研究建筑结构及其构建在荷载作用下维持平衡的条件以及承载力的计算问题,为建筑结构提供理论基础。

建筑结构是房屋建筑中能承受荷载并能起骨架作用的体系,为建筑提供合乎使用的空间。

二者相辅相成~

钢结构是以钢材制作为主的结构,是主要的建筑结构类型之一。

钢材的特点是强度高、自重轻、整体刚性好、变形能力强,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产。

钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。

另外还有无热桥轻钢结构体系,建筑本身是不节能的,本技术用巧妙的特种连接件解决了建筑的冷热桥问题;小桁架结构使电缆和上下水管道从墙里穿越,施工装修都方便;无比节能是世界上唯一的一家以冷弯薄壁型钢建7层住宅的建筑体系。

力学的学习目的是为了进行工程计算.土木工程是一个涵盖极广的一级学科,它下设了岩土工程,结构工程,市政工程,供热、供燃气、通风及空调工程,防灾减灾工程及防护工程,桥梁与隧道工程等六个二级学科,所计算分析的对象包括诸如:

工业建筑、民用建筑、公共建筑、道路、桥梁、隧道等众多工程类型.力学在工程中应用首先就要提取出相应的工程计算模型.属于杆系结构的工程对象当然要用结构力学的手段进行分析;而涉及实体结构的工程对象分析则必须要用弹性力学、土力学和岩石力学的手段来完成;对难以求解的复杂工程问题则必须寻求相应数值解答,数值计算方法也是近几十年来在解决工程问题时力学发展最快的研究方向.

土木工程主导专业课程的建构是基于几大力学课来实现的.若缺乏对几大力学的基本概念、物理意义和求解方法的深入理解,想真正掌握好相关专业课程。

做好有关工程设计、施工、监理乃至进一步的科研工作,是不可想象的.按照所开设力学课程的两类划分(结构力学类和弹性力学类),相应的专业课两类分支也相应出现.基于结构力学类(结构工程方向)的包括:

钢筋砼结构、砌体结构、钢结构、高层建筑设计、建筑抗震设计、桥梁结构、组合结构、建筑施工技术;基于弹性力学类(岩土工程方向)的包括:

地基处理与加固、基础工程、挡土结构与基坑工程、地下结构、道路勘测与结构等.

任何学科都不是孤立的,土木工程教学中要求学生掌握的知识领域有很多交叉,与建筑学、建筑经济等相关学科密切相关.与建筑学相衔接的课程主要是房屋建筑学;与建筑经济相关的有工程概预算、项目组织与管理、工程招投标等课程;其他相关课程还有:

工程制图、建筑材料、工程测量、岩土及结构测试、建筑CAD等.

动力问题的求解过程与静力问题是一样的.只要将相应的惯性力视为外力加到结构上进行静力分析即可,这是达朗伯原理赋予的有效手段.此时物理量是空间和时间的四维坐标函数,求解方程包括三类基本方程,并辅以边界和初值条件.惯性力的添加使得动力问题的分析必然涉及到求解一个更复杂的二阶偏微分方程组,这无疑增加了动力计算的难度,弹性力学动力问题一般都不可能按应力求解,只能按位移求解(拉密方程).结构动力学计算则按质点系模型进行简化,工程实用性强,提出了各种近似计算方法,如:

振型分解法、瑞兹能量法、底部剪力法和时程分析法等.土木工程专业的动力计算很重要,这是由于地震力是设计中必须考虑的因素.但对学生来讲,只要掌握“抗震规范”中提供的简单计算手段即可.经验证明,《建筑抗震设计规范》中提供的地震力动态作用近似分析方法是相当有效的,完全可以满足工程精度的要求.

结构力学类中的失稳标志是指结构产生变形特征的根本变化(第一类稳定问题)或其变形出现无限增长的特征(第二类稳定问题).稳定问题求解以能量法最为方便可靠,复杂问题也可采用有限元法.由于建筑结构多为长杆件体系,在压、弯等状态下容易产生种种失稳现象.而弹性力学类学科的研究对象是块体,不存在结构力学类中的失稳问题,“失稳”在弹性力学(包括土力学、岩石力学)中已经转化为“强度”问题,所谓的弹性体失稳或岩土工程丧失稳定性实质上就是强度破坏.可见,“稳定”的概念在各门力学间尚有待统一.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 公务员考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1