公开密钥加密算法RSA的Matlab实现本科毕业设计.docx

上传人:b****6 文档编号:7947324 上传时间:2023-01-27 格式:DOCX 页数:40 大小:109.78KB
下载 相关 举报
公开密钥加密算法RSA的Matlab实现本科毕业设计.docx_第1页
第1页 / 共40页
公开密钥加密算法RSA的Matlab实现本科毕业设计.docx_第2页
第2页 / 共40页
公开密钥加密算法RSA的Matlab实现本科毕业设计.docx_第3页
第3页 / 共40页
公开密钥加密算法RSA的Matlab实现本科毕业设计.docx_第4页
第4页 / 共40页
公开密钥加密算法RSA的Matlab实现本科毕业设计.docx_第5页
第5页 / 共40页
点击查看更多>>
下载资源
资源描述

公开密钥加密算法RSA的Matlab实现本科毕业设计.docx

《公开密钥加密算法RSA的Matlab实现本科毕业设计.docx》由会员分享,可在线阅读,更多相关《公开密钥加密算法RSA的Matlab实现本科毕业设计.docx(40页珍藏版)》请在冰豆网上搜索。

公开密钥加密算法RSA的Matlab实现本科毕业设计.docx

公开密钥加密算法RSA的Matlab实现本科毕业设计

公开密钥加密算法RSA的Matlab实现

[摘要]RSA算法是基于数论的公开密钥加密算法,它已经成为现在最流行的公钥加密算法和数字签名算法之一。

其算法的安全性基于数论中大素数分解的困难性,所以RSA公钥密码体制算法的关键是如何产生大素数和进行大指数模幂运算。

本文首先介绍了RSA公开密钥加密算法的数学原理,并介绍了几种流行的产生大素数的算法。

然后用matlab具体实现公钥加密算法RSA的加密和解密,从而实现了数据的安全传输。

[关键词]RSA算法;加密;素数

 

TheRealizationofRSAAlgorithmforPublicKeyEncryptionBasedonMatlab

(Grade07,Class3,Majorelectronicsandinformationengineering,CommunicationengineeringDept.,Tutor:

[abstract]:

ThealgorithmisbasedonthetheoryofRSApublickeyencryptionalgorithm,ithasbecomethemostpopularpublickeyencryptionalgorithmanddigitalsignaturealgorithmofone.Thesafetyofthealgorithmbasedonnumbertheorycuhkthedifficultyofprimedecomposition,sotheRSApublickeycryptographyalgorithmsiskeytohowtoproducelargeprimeNumbersDaZhiandtransmitpoweroperation.ThispaperfirstintroducedtheRSApublickeyencr-yptionalgorithmofmathematicaltheory,andintroducesseveralpopularproducelargeprimeNumbersofthealgorithm.ThenusematlabRSApublickeyencryptionalgorithmre-alizationofencryptionanddecryptionisrealized,andthesafetyofthedatatrans-mission.

[Keywords]:

RSAalgorithm;encryption;primenumber

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:

所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:

     日 期:

     

指导教师签名:

     日  期:

     

使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:

按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:

     日 期:

     

学位论文原创性声明

本人郑重声明:

所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:

日期:

年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权    大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:

日期:

年月日

导师签名:

日期:

年月日

引言1

1数据加密概述2

1.1基本概念2

1.2数据加密分类3

2Matlab工具介绍6

2.1MATLAB语言的主要特点6

2.2Matlab的程序设计6

2.2.1脚本文件和函数文件6

2.2.2函数调用和参数传递8

2.2.3MATLAB的程序结构和控制流程8

3RSA公钥密码体制10

3.1算法简介10

3.2算法的数学基础10

3.3RSA公钥密码算法10

3.3.1算法步骤10

3.3.2参数分析11

3.3.3安全性分析12

3.4公钥密码体制中安全大素数的生成13

3.4.1素数筛选13

3.4.2素数检测14

3.5RSA的Matlab实现16

3.5.1算法原理16

3.5.2运行过程20

3.5.3结论分析22

4基于RSA的数字签名23

4.1数字签名概述23

4.2基于RSA的数字签名24

4.3RSA数字签名方案的不足24

5RSA算法的实际应用和发展25

5.1算法的应用25

5.2算法的改进26

结论27

致谢28

参考文献29

附录30

附录A:

英文资料及翻译30

附录B:

源程序40

引言

随着Internet用户的激增,世界正步入网络经济的新时代。

如网上购物、网上银行、网上证券等。

然而,有一些人利用利用他们所掌握的技术非法侵入他人的计算机系统,窃取、篡改、破坏一些重要的数据,给社会造成巨大的损失。

密码技术的发展与应用,对解决信息交换的安全问题,保障数据信息的安全,起着不可忽视的作用。

所谓密码技术,就是针对信息进行重新编码,从而达到隐藏信息的内容,使非法用户无法获取信息真实内容的一种手段。

目前在网络中,一般采用两种密码体制:

对称密钥体制和非对称密钥体制。

对称密钥体制中的加密密钥和解秘密钥是相同的,所以又称密秘密钥密码体制。

对称密钥算法运算效率高、使用方便、加密效率高,在处理大量数据时被广泛使用,但其关键是要保证密钥的安全,为安全起见,密钥要定期改变,所以,对称密钥就存在一个如何安全管理密钥的问题。

与对称密钥体制相对应的非对称密钥体制又称为公开密钥密码体制,它是在1976年由Diffe和Hellman发表的《密码学的新方向》一文中提出的,从此打破了长期使用单密钥体制的束缚。

自此提出公约密码思想以后,涌现出很多的公约密钥算法体系,经过20多年的实践检验,公约系统的应用技术日趋完善,应用领域日趋广泛。

公开密钥密码体制,加密密钥和解秘密钥是分开采用一对不同的密钥进行的,分别存在一个公钥和私钥,公钥公开,私钥保密,并且知道其中一个时并不能从中推出另一个。

其典型的算法有背包密码、RSA等。

其中RSA公约算法系统因为其可靠安全性,易于实现性,更是受大家的认可和欢迎。

RSA加密算法的最大优点就是不需要对密钥通信进行保密,所需传输的只有公开密钥,这样就省去了一条开销很大的密钥传输信道。

其保密性强,密钥管理方便,并且具有数字签名、认证和签别等多种功能,特别适合于现代保密通信的需要。

大多数使用公钥密码进行加密和数字签名的产品和标准使用的都是RSA算法。

RSA的安全性是基于大数因子分解的困难性。

目前一般认为RSA需要1024位以上的字长才有安全保障。

由于RSA所采用的模幂运算耗时太多,因此它通常只能用于加密少量数据或者加密密钥。

需要注意的是,RSA的安全性只是一种计算安全性,绝对不是无条件的安全性,这是由它的理论基础决定的。

所以,在实现RSA算法的过程中,每一步都应该尽量从安全性方面考虑。

本文就RSA算法以及如何用Matlab语言实现给于了详细的分析。

1数据加密概述

 密码学是一门古老而深奥的学科,它对一般人来说是陌生的,因为长期以来,它只在很少的范围内,如军事、外交、情报等部门使用。

计算机密码学是研究计算机信息加密、解密及其变换的科学,是数学和计算机的交叉学科,也是一门新兴的学科。

随着计算机网络和计算机通讯技术的发展,计算机密码学得到前所未有的重视并迅速普及和发展起来。

在国外,它已成为计算机安全主要的研究方向,也是计算机安全课程教学中的主要内容。

  密码是实现秘密通讯的主要手段,是隐蔽语言、文字、图象的特种符号。

凡是用特种符号按照通讯双方约定的方法把电文的原形隐蔽起来,不为第三者所识别的通讯方式称为密码通讯。

在计算机通讯中,采用密码技术将信息隐蔽起来,再将隐蔽后的信息传输出去,使信息在传输过程中即使被窃取或载获,窃取者也不能了解信息的内容,从而保证信息传输的安全。

任何一个加密系统至少包括下面四个组成部分:

(1)未加密的报文,也称明文。

(2)加密后的报文,也称密文。

(3)加密解密设备或算法。

(4)加密解密的密钥。

发送方用加密密钥,通过加密设备或算法,将信息加密后发送出去。

接收方在收到密文后,用解密密钥将密文解密,恢复为明文。

如果传输中有人窃取,他只能得到无法理解的密文,从而对信息起到保密作用。

1.1基本概念

数据加密技术就是指将一个信息或明文经过加密钥匙及加密函数转换,变成无意义的密文,而接收方则将此密文经过解密函数.解密钥匙还原成明文。

加密技术是网络安全技术的基石。

明文,即加密前的真实的数据或信息,它是可以被外界所识别,它指代的含义比较广泛,比如用户A要将一份文件发送给用户B,那么我们就将用户A手里所拿的那份文件称之为明文。

密文,就是对信息经过一定的处理,使它变成无意义的乱码,非指定用户无法对它进行识别,例如A使用密钥K加密消息并将其发送给B,B收到加密的消息后,使用密钥K对其解密以恢复原始消息,那么在这一过程当中A在途中发送给B的东西我们就叫它密文,因为这个文件除B外,其他人得到它也没有任何意义,这就保证了信息传送的保密性。

完成加密和解密的算法成为为密码体制。

人们一方面要把自己的信号隐蔽起来,另一方面则想把别人的隐蔽信息挖掘出来,于是就产生了密码分析的逆科学——密码分析。

密码分析研究的问题是如何把密文转换成明文。

把密文转换成明文的过程称为破译。

破译也是进行函数变换,变换过程中使用的参数也叫密钥。

一般地,如果求解一个问题需要一定量的计算,但环境所能提供的实际资源却无法实现,则这种问题是计算上不可能的。

如果一个密码体制的破译是计算上不可能的。

则称该密码体制是计算上安全的。

密码体制必须满足三个基本要求:

(1)对所有的密钥、加密和解密都必须迅速有效;

(2)体制必须容易使用;

(3)体制的安全性必须只依赖于密钥的保密性。

密码体制要实现的功能可分为保密性和真实性两种。

保密性要求密码分析员无法从截获的密文中求出明文。

一般情况下一个密码体制的保密性包括两项要求:

(1)即使截获了一段密文C,甚至知道了与它对应的明文M,密码分析要从系统中求出解密变换,仍然是计算上不可行的。

(2)密码分析员要由截获的密文C中系统的求出明文M是计算上不可能的。

数据的真实性要求密码分析员无法用虚假的密文代替真是密文而不被察觉,它也包括两个要求:

(1)对于给定的C,即使密码分析员知道了对应于它的明文M,要系统的求出加密变换仍然是计算上不可能的。

(2)密码分析员要系统地找到密文,使其是明文空间上有意义的明文,这在计算上是不可能的。

1.2数据加密分类

专用密钥:

又称为对称密钥或单密钥,加密和解密时使用同一个密钥,即同一个算法。

如DES和MIT的Kerberos算法。

单密钥是最简单方式,通信双方必须交换彼此密钥,当需给对方发信息时,用自己的加密密钥进行加密,而在接收方收到数据后,用对方所给的密钥进行解密。

当一个文本要加密传送时,该文本用密钥加密构成密文,密文在信道上传送,收到密文后用同一个密钥将密文解出来,形成普通文体供阅读。

在对称密钥中,密钥的管理极为重要,一旦密钥丢失,密文将无密可保。

这种方式在与多方通信时因为需要保存很多密钥而变得很复杂,而且密钥本身的安全就是一个问题。

公开密钥:

又称非对称密钥,加密和解密时使用不同的密钥,即不同的算法,虽然两者之间存在一定的关系,但不可能轻易地从一个推导出另一个。

有一把公用的加密密钥,有多把解密密钥,如RSA算法。

非对称密钥由于两个密钥(加密密钥和解密密钥)各不相同,因而可以将一个密钥公开,而将另一个密钥保密,同样可以起到加密的作用。

在这种编码过程中,一个密码用来加密消息,而另一个密码用来解密消息。

在两个密钥中有一种关系,通常是数学关系。

公钥和私钥都是一组十分长的、数字上相关的素数(是另一个大数字的因数)。

有一个密钥不足以翻译出消息,因为用一个密钥加密的消息只能用另一个密钥才能解密。

每个用户可以得到唯一的一对密钥,一个是公开的,另一个是保密的。

公共密钥保存在公共区域,可在用户中传递,甚至可印在报纸上面。

而私钥必须存放在安全保密的地方。

任何人都可以有你的公钥,但是只有你一个人能有你的私钥。

它的工作过程是:

“你要我听你的吗?

除非你用我的公钥加密该消息,我就可以听你的,因为我知道没有别人在偷听。

只有我的私钥(其他人没有)才能解密该消息,所以我知道没有人能读到这个消息。

我不必担心大家都有我的公钥,因为它不能用来解密该消息。

公钥加密体制具有以下优点:

(1)密钥分配简单。

(2)密钥的保存量少。

(3)可以满足互不相识的人之间进行私人谈话时的保密性要求。

(4)可以完成数字签名和数字鉴别。

 

明文M

密文C=E(M,)M=D(C,)

(密钥本)

图1.1公钥密码体制示意图

 对称密钥:

对称密钥是最古老的,一般说“密电码”采用的就是对称密钥。

由于对称密钥运算量小、速度快、安全强度高,因而目前仍广泛被采用。

  DES是一种数据分组的加密算法,它将数据分成长度为64位的数据块,其中8位用作奇偶校验,剩余的56位作为密码的长度。

第一步将原文进行置换,得到64位的杂乱无章的数据组;第二步将其分成均等两段;第三步用加密函数进行变换,并在给定的密钥参数条件下,进行多次迭代而得到加密密文。

非对称加密技术:

数字签名一般采用非对称加密技术(如RSA),通过对整个明文进行某种变换,得到一个值,作为核实签名。

接收者使用发送者的公开密钥对签名进行解密运算,如其结果为明文,则签名有效,证明对方的身份是真实的。

当然,签名也可以采用多种方式,例如,将签名附在明文之后。

数字签名普遍用于银行、电子贸易等。

数字签名:

数字签名不同于手写签字,数字签名随文本的变化而变化,手写签字反映某个人个性特征,是不变的;数字签名与文本信息是不可分割的,而手写签字是附加在文本之后的,与文本信息是分离的。

  值得注意的是,能否切实有效地发挥加密机制的作用,关键的问题在于密钥的管理,包括密钥的生存、分发、安装、保管、使用以及作废全过程。

2Matlab工具介绍

2.1MATLAB语言的主要特点

(1).具有丰富的数学功能。

①包括矩阵各种运算。

如:

正交变换、三角分解、特征值、常见的特殊矩阵等。

②包括各种特殊函数。

如:

贝塞尔函数、勒让德函数、伽码函数、贝塔函数、椭圆函数等。

③包括各种数学运算功能。

如:

数值微分、数值积分、插值、求极值、方程求根、FFT、常微分方程的数值解等。

(2).具有很好的图视系统。

①可方便地画出两维和三维图形。

②高级图形处理。

如:

色彩控制、句柄图形、动画等。

③图形用户界面GUI制作工具,可以制作用户菜单和控件。

使用者可以根据自己的需求编写出满意的图形界面。

(3).可以直接处理声言和图形文件。

①声言文件。

如:

WAV文件(例:

wavread,sound等)。

②图形文件。

如:

bmp、gif、pcx、tif、jpeg等文件。

(4).具有若干功能强大的应用工具箱。

如:

SIMULINK、COMM、DSP、SIGNAL等16种工具箱。

(5).使用方便,具有很好的扩张功能。

①使用MATLAB语言编写的程序可以直接运行,无需编译。

②可以M文件转变为独立于平台的EXE可执行文件。

③MATLAB的应用接口程序API是MATLAB提供的十分重要的组件,由一系列接口指令组成。

用户就可在FORTRAN或C中,把MATLAB当作计算引擎使用。

(6).具有很好的帮助功能

①提供十分详细的帮助文件(PDF、HTML、demo文件)。

②联机查询指令:

help指令(例:

helpelfun,helpexp,helpsimulink),lookfor关键词(例:

lookforfourier)。

2.2Matlab的程序设计

2.2.1脚本文件和函数文件

M文件有两种形式:

脚本文件(ScriptFile)和函数文件(FunctionFile)。

这两种文件的扩展名,均为“.m”。

(1)M脚本文件:

①对于一些比较简单的问题,在指令窗中直接输入指令计算。

②对于复杂计算,采用脚本文件(Scriptfile)最为合适。

③MATLAB只是按文件所写的指令执行。

④M脚本文件的特点是:

⑤脚本文件的构成比较简单,只是一串按用户意图排列而成的(包括控制流向指令在内的)MATLAB指令集合。

⑥脚本文件运行后,所产生的所有变量都驻留在MATLAB基本工作空间(Baseworkspace)中。

只要用户不使用清除指令(clear),MATLAB指令窗不关闭,这些变量将一直保存在基本工作空间中。

(2)M函数文件:

①与脚本文件不同,函数文件犹如一个“黑箱”,把一些数据送进并经加工处理,再把结果送出来。

②MATLAB提供的函数指令大部分都是由函数文件定义的。

③M函数文件的特点是:

④从形式上看,与脚本文件不同,函数文件的笫一行总是以“function”引导的“函数申明行”。

⑤从运行上看,与脚本文件运行不同,每当函数文件运行,MATLAB就会专门为它开辟一个临时工作空间,称为函数工作空间(Functionworkspace)。

当执行文件最后一条指令时,就结束该函数文件的运行,同时该临时函数空间及其所有的中间变量就立即被清除。

⑥MATLAB允许使用比“标称数目”较少的输入输出宗量,实现对函数的调用。

(3)M文件的一般结构:

①由于从结构上看,脚本文件只是比函数文件少一个“函数申明行”,所以只须描述清楚函数文件的结构。

②典型M函数文件的结构如下:

③函数申明行:

位于函数文件的首行,以关键functio开头,函数名以及函数的输入输出宗量都在这一行被定义。

④笫一注释行:

紧随函数申明行之后以%开头笫一注释行。

该行供lookfor关键词查询和help在线帮助使用。

⑤在线帮助文本区:

笫一注释行及其之后的连续以%开头的所有注释行构成整个在线帮助文本。

⑥编写和修改记录:

与在线帮助文本区相隔一个“空”行,也以%开头,标志编写及修改该M文件的作者和日期等。

⑦函数体:

为清晰起见,它与前面的注释以“空”行相隔。

2.2.2函数调用和参数传递

(1)局部变量和全局变量:

①局部(Local)变量:

它存在于函数空间内部的中间变量,产生于该函数的运行过程中,其影响范围也仅限于该函数本身。

②全局(Global)变量:

通过global指令,MATLAB也允许几个不同的函数空间以及基本工作空间共享同一个变量,这种被共享的变量称为全局变量。

(2)函数调用:

①在MATLAB中,调用函数的常用形式是:

[输出参数1,输出参数2,…]=函数名(输入参数1,输入参数2,…)

②函数调用可以嵌套,一个函数可以调用别的函数,甚至调用它自己(递归调用)。

(3)参数传递:

①MATLAB在函数调用上有一个与众不同之处:

函数所传递的参数具有可调性。

②传递参数数目的可调性来源于如下两个MATLAB永久变量:

③函数体内的nargin给出调用该函数时的输入参数数目。

④函数体内的nargout给出调用该函数时的输出参数数目。

⑤只要在函数文件中包括这两个变量,就可以知道该函数文件调用时的输入参数和输出参数数目。

⑥值得注意:

nargin、nargout本身都是函数,不是变量,所以用户不能赋值,也不能显示。

⑦“变长度”输入输出宗量:

varargin、varrgout。

具有接受“任意多输入”、返回“任意多输出”的能力。

⑧跨空间变量传递:

evalin。

2.2.3M文件的调试

(1)编写M文件时,错误(Bug)在所难免。

错误有两种:

语法(Syntax)错误和运行(Run-time)错误。

(2)语法错误是指变量名、函数名的误写,标点符号的缺、漏等。

对于这类错误,通常能在运行时发现,终止执行,并给出相应的错误原因以及所在行号。

(3)运行错误是算法本身引起的,发生在运行过程中。

相对语法错误而言,运行错误较难处理。

尤其是M函数文件,它一旦运行停止,其中间变量被删除一空,错误很难查找。

(4)有两种调试方法:

直接调试法和工具调试法。

(5)直接调试法:

可以用下面方法发现某些运行错误。

(6)在M文件中,将某些语句后面的分号去掉,迫使M文件输出一些中间计算结果,以便发现可能的错误。

(7)在适当的位置,添加显示某些关键变量值的语句(包括使用disp在内)。

(8)利用echo指令,使运行时在屏幕上逐行显示文件内容。

echoon能显示M脚本文件;echoFunNsmeon能显示名为FunNsme的M函数文件。

(9)在原M脚本或函数文件的适当位置,增添指令keyboard。

keyboard语句可以设置程序的断点。

(10)通过将原M函数文件的函数申明行注释掉,可使一个中间变量难于观察的M函数文件变为一个所有变量都保留在基本工作空间中的M脚本文件。

3RSA公钥密码体制

3.1算法简介

公钥加密算法的典型代表是RSA(Rivest,Shamir,Adelman)算法,它是公共密钥机制中的一种比较成熟的算法。

它是建立在“大数分解和素数据检测”的理论基础上的,两个大素数相乘在计算机上是容易实现的,但将该乘积分解成两个素数因子的计算量却相当巨大,大到甚至在计算机上不可能实现,所以就确保了RSA算法的安全性。

RSA算法是第一个既能用于数据加密又能用于数字签名的算法,它为公用网络上信息的加密和鉴别提供了一种基本的方法,因此对它的开发和研究对我们进行知识总结和积累并将所学与实际相结合都有重大的实际意义。

3.2算法的数学基础

基于RSA算法的数学定理:

定义:

设m是正整数,1,2,3,…,m中与m互素的数的个数记作,称为欧拉函数。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 法语学习

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1