机房精密空调系统设计方案.docx
《机房精密空调系统设计方案.docx》由会员分享,可在线阅读,更多相关《机房精密空调系统设计方案.docx(10页珍藏版)》请在冰豆网上搜索。
机房精密空调系统设计方案
机房精密空调系统
设计方案
第一章精密空调系统配置2
1.1机房设计要求2
1.2机房负荷计算2
1.3
第二章系统设计5
4.2空调室内室外机安装原则11
4.3空调相关工程建议11
4.3.1防水工程11
4.3.2地板工程11
4.3.3天花工程12
4.3.4墙柱面工程12
4.3.5门窗工程12
4.3.6电气安装12
第五章机房动力环境监控系统12
5.1系统内容12
5.2各子系统内容17
第一章精密空调系统配置
1.1机房设计要求
根据中心机房的实际情况,我们建议选用恒温恒湿机房专用精密空调。
它可以保证电
脑机房拥有一个恒久的良好的机房环境。
机房环境特点:
机房中的环境设备在运行中散热
量大而且集中,散湿量极小。
即机房设备散热量的95%是显热,热量大,湿量小,热湿比极
大。
在这种情况下,空气处理可近似作为一个等湿降温过程。
在这种情况下的焓差小,要消
除余热必然是大风量。
此外,因为计算机设备、网络设备24小时不间断运行,所以需要空
调系统一年四季不间断地运行。
同时,根据机房的围护结构特点(主要是墙体、顶面、地面,
包括:
楼层、朝向、外墙、内墙及墙体材料,及门窗型式、单双层结构及缝隙、散热)、人
员的发热量,照明灯具的发热量,新风负荷等各种因素,计算出计算机房所需的制冷量,因
此选定空调的容量。
数据中心机房空气环境设计参数:
机房的环境是靠空调机来实现的。
但是,保证机房的洁净度则要求做到以下几点:
1.机房要密封墙体围护结构清洁。
2.机房要保持正压,防止脏空气侵蚀。
新风做到两级净化,即初效、亚高效过滤器,从而使输入机房的空气质量大大提高。
3.空调机设中效过滤器,并定期更换,从而保证机房循环中不断对空气净化。
4.该方案设计可以保证,空气洁净度达到国标要求。
机房专用空调采用下送风、上回风的送风方式。
1.2机房负荷计算
具体情况:
XXXX机房,房间面积约为142m2,机房机柜安装服务器、存储设备、核心交换机等重要设备。
机房负荷分析:
负荷构成:
主机房空调负荷包括冷负荷、热负荷和湿负荷。
冷负荷是指在某一时刻为保持机房具有稳定的温度、湿度,需要向机房空气中供应的冷量;热负荷是指为补偿房间失热量而
需要向房间供应的热量;湿负荷是指为维持室内相对湿度所需由房间除去或增加的湿量。
其
中,冷负荷主要由以下部分组成见表:
按照空调设计中负荷计算的要求,精确空调负荷的确定方法如下:
机房主要热量的来源:
热负荷分析:
(1)计算机设备热负荷:
Q1=860*P*Y]1*nn(Kcal/h)
Q1:
计算机设备热负荷
P:
机房内各种设备总功耗
n:
同时使用系数
牽:
利用系数
陷:
负荷工作均匀系数通常,n、牽、n取o.6—0.8之间,本设计考虑容量变化要求
较小,取值为0.6。
(2)照明设备热负荷:
Q2=C*P(Kcal/h)
P:
照明设备标定输出功率
C:
每输出1W放热量Kcal/hw(白炽灯0.86口光灯1)根据国家标准《计算站场地技术要求》要求,机房照度应大于2001X,其功耗大约为20W/M2以后的计算中,照明功耗将以20W/M2
为依据计算。
(3)人体热负荷
Q3=P*N(Kcal/h)
N:
机房常有人员数量
P:
人体发热量,轻体力工作人员热负荷显热与潜热之和,在室温为21C和24C时均为
102Kcal。
(4)围护结构传导热
Q4=K*F*(t1-t2)(Kcal/h)
K:
转护结构导热系统普通混凝土为1.4—1.5
F:
转护结构面积
t1:
机房内内温度C
t2:
机房外的计算温度C在以后的计算中,t1-t2定为10C计算。
屋顶与地板根据修正
系数0.4计算。
(5)新风热负荷计算较为复杂,在此方案中,我们以空调本身的设备余量来平衡,不另外计算。
(6)其他热负荷
除上述热负荷外,在工作中使用的示波器、电烙铁、吸尘器等也将成为热负荷,由于这
些设备功耗小,只粗略根据其输入功率与热功当量之积计算。
Q5=860*P
依据经验采用功率及面积法”计算机房热负荷:
Qt=Q1+Q2
其中,Qt总制冷量(KW)
Q1室内设备负荷(=设备功率>0.8)
Q2环境热负荷(=0.12〜0.18kW/m2>机房面积)
根据目前机房内设备数量估算机房内负载约为30KW所以室内设备热负荷为:
Q1=30*0.8=24KW
环境热负荷为:
Q2=0.18kw/平方米>42平方米=25.56KW
则Qt=Q1+Q2=24+25.56=49.56KW
注:
电池发热量忽略不计。
此外,UPS的发热量也非常小,也可忽略不计。
实际工程热符合估算方法:
在实际工程方案设计中由于建筑物机构的复杂性,通常根据下表来选择机房单位面积的
冷量需求,然后根据总面积计算出冷量需求。
主机房空调装机容量:
主机房空调装机容量应根据空调制冷负荷总量Q预留15-20%余量。
主机房空调设备配
置时,可根据具体情况分期实施,分期实施时应在支持区为设备预留足够的空间。
按此情况
此机房空调设备应该配置不小于60KW勺总冷负荷。
为了保证客户的投资回报率以及机房安
全,我们建议配置两台P2040双系统的精密空调,一方面满足机房实际制冷量的需求,另一
方面两台空调可以在一定程度上降低由于空调设备故障引起的机房温度短时间快速升高问题,给空调的维修预留充足的时间,从而保证机房设备的安全。
第二章系统设计
2.1系统概述
工作人员身心健康的问题越来越受到建设方的重视,并成为追求目标。
艾默生网络能源具有业界最齐全的网络能源产品线、并且其网络能源主设备全部为自有
户的核心竞争力。
根据中国国家标准GB50174-03《电子计算机机房设计规范》,并实际考虑机房容量估
计和初步建设思路要求,结合艾默生网络能源产品特性和配置特点拟制了机房环境控制一体化技术建议书。
系统方案中涉及到机房专用空调系统、机房环境场地和设备监控系统等。
建议XXXX机房专用空调系统采用艾默生Liebert.PEXP2040FWPMS1R(2台)精密空调,该
类型空调采用模块化结构设计;全正面维护;高技术V'型蒸发器盘管;先进的涡旋式压缩机,
高效、节能;大屏幕LCD带图形、全中文菜单显示器。
2.2系统设计依据
1.GB2887-07《计算机场地技术条件》;
2.YD/T585-2006《通信用配电设备》;
3.
YD5040-07《通信电源设备安装设计规范》;
8.YD/T1095一2008《信息技术设备用不间断电源通用技术条件》;
9.YDJ26-06《通信局(站)接地设计暂行技术规定》;
10.GB50174-03《电子计算机机房设计规范》;
11.GB7450-07《电子设备雷击保护导则》;
12.CECS72:
07《建筑与建筑群综合布线系统工程设计规范》;
13.CECS89:
07《建筑与建筑群综合布线系统工程施工及验收规范》;
14.GB50174-03《电子计算机机房设计规范》
15.机房规划详细需求
2.3系统设计原则及系统特点
XXXX机房使用要求。
在业界具有领先的
本方案设计的艾默生Liebert.PEXP2040F机房专用空调系统符合
2.3.1通用性
本系统的设计符合国家设计标准。
2.3.2可靠性
设备具有良好的电磁兼容性和电气隔离性能,不影响其他设备正常工作。
2.3.3稳定性
产品都经过全球主要电信商、数据网以及金融行业长期的运行考验,技术、领先的制造和领先的品牌;
2.3.4安全性
符合高等级的抗扰度国际标准,工作安全可靠;
2.3.5可维护性
主设备采用模块化结构设计,便于故障的维护处理;
2.3.6扩充性
在系统设计中充分考虑到用户后期的扩容,做了合理的冗余设计;
2.3.7经济性
系统整体设计,可合理设计设备容量,减少设备成本。
第三章Liebert.PEX系列产品介绍
3.1Liebert.PEX系列描述
3.2Liebert.PEX机组的特点
.高可靠性、高节能性、全寿命低成本
.同等制冷量条件下,占地面积最小。
侧面及背面不需要维护空间,前面只需要600mmt护
空间
.可拆卸后搬运,保证重新组装与整机无差别,适合特殊场地搬运(如利用小电梯或狭小通
道)
.艾默生Copeland高效涡旋式压缩机,直接适合环保制冷剂(R407C
.自适应风机系统,满足不同机外余压需求
.大面积V型蒸发器,快速除湿设计,确保节能
.独特的高效远红外加湿系统,加湿速度快,适应恶劣水质,低维护量
.全中文图形显示屏
.iCOM强大的群控与通讯功能
3.3Liebe比PEX机组的设计
Liebert.PEX风冷系统的室内机由压缩机、蒸发器、加热器、风机、控制器、远红外
加湿器、热力膨胀阀、视液镜、干燥过滤器等主要部件组成。
水冷系列还包括高效板式换热器、水流量调节阀。
室内侧制冷系统和水系统中可能涉及维
护、更换的器件全部采用易拆卸的Rotalock连接方式,使维护更方便。
.PEX风冷机组整机性能体现了高可靠性、高灵活性、高节能率、全寿命低成本。
.PEX可靠性充分体现在:
iCOM智能控制系统;Copeland涡旋压缩机;自适应风机系统;远红外加湿系统;全调速低噪声冷凝器等。
.PEX高灵活性、高节能率充分体现在:
iCOM智能控制系统;自适应风机系统;远红外
加湿系统;全调速低噪声冷凝器;占地面积小;可拆卸搬运,全正面维护;可直接应用环保
制冷剂等。
.PEX全寿命成本充分体现在:
iCOM智能控制系统;Copeland涡旋压缩机;自适应风机系统;V型蒸发器;快速除湿系统;远红外加湿系统;全调速低噪声冷凝器等。
.采用真正的模块化设计思路。
生产的单制冷回路和双制冷回路PEX系列精密空调,
可以提供单机的制冷量为20KW至100KW并可组合在一起。
即能满足现阶段的使用,又能适应未来发展的需求,具有非常广泛的应用范围。
它采用了先进的微处理器控制技术,完全
满足机房对环境的精密控制要求。
并且机组控制器可完成各机组间的定时切换及故障切换,同时便于空调系统的集中管理。
PEX机组标配加湿系统为远红外加湿器。
.应用高能效比的谷轮(Copeland,艾默生子公司,世界上最大的涡旋式压缩机生产厂)
公司涡旋式(SCROLL压缩机。
涡旋压缩机的活动部件的减少使机组的噪声及震动降低很多;压缩机的压缩过程连续、平稳;压缩机的排气过程旋转角度超过540度;在吸气及压缩过程
中没有热量交换;在压缩过程中制冷剂气流方向没有改变;减少了气流损失;涡旋式压缩机
无需高、低压阀门;减少了阀门损失,防止产生液击;启动电流低。
.采用了V型”蒸发器盘管,采用了带内螺纹的铜管及冲缝型翅片,比采用传统式盘管的
机组有更高的传热效率。
采用V型”结构盘管可使制冷系统的循环与制冷负荷相匹配,并且
通过盘管表面的气流更加平稳,最大限度的降低机组噪声。
配有专门除湿电磁阀,当除湿时
只用双面蒸发器的其中一面,电磁阀保证只用其2/3面积进行除湿,达到了快速和节能的除
湿效果,避免了过度除湿从而增加再热设计,达到节能目的。
.高效低维护量的远红外加湿器:
加湿速度快,适应恶劣水质,低维护量。
加湿器不锈
钢水盘,高强度的石英灯,微电脑绝对湿度逻辑控制,5至6秒钟内即可将洁净的蒸汽微粒
加入空气中。
石英灯提供的辐射能,使水份在纯净状态蒸发,不含杂物。
远红外加湿器备有
自动供水系统,它大大减少了清理维护工作。
这个系统有一个调整的过量供水器以防止矿物质沉淀,在水压为34.5至1034千帕之间,可适当地调节流量。
控制阀还设有一个Y型的松紧螺旋扣,内置水过滤网。
远红外加湿对水质无要求,运行成本低,加湿量大,维护量少。
当加湿水盘内达到高水位标准时,水位探测器将传达报警信号,石英灯和加水阀门都关闭保
护。
运行成本低(免除电极加湿式需频繁维护和更换加湿罐的问题)。
.张力自调节风机系统,在出厂设置或现场可通过更换电机皮带轮和皮带的方式(而不
是风机皮带轮和皮带)调节机外余压,在增加机外余压的过程中,确保通
过增加电机功率同时增加风量和风压(而不会导致更换风机皮带轮和皮带导致的风压增加、风量下降的问题)。
此外,独特的皮带张力调整系统,可避免在运行过程中出现皮带过松及过紧的现象,消除了风机丢转的弊病,大大的延长了皮带的使用寿命。
.PEX系统的微处理控制器采用全中文蓝色背光液晶LCD显示屏显示,一般情况下显示
室内当前的温度和湿度,温湿度设定值,设备输出百分比图(风机、压缩机、制冷、制热、除湿、加湿等)及报警情况。
用户还可以从显示屏的主菜单上进入浏览各设定点、事件记录、
图形数据、传感器数据,报警设置等更详细的信息。
用户界面操作简洁,多级密码保护,能有效防止非法操作。
控制器具有掉电自恢复功能,以及高/低电压保护。
通过菜单操作可以准确了解各主要部件运行时间。
专家级故障诊断系统,可以自动显示当前故障内容,方便维护人员进行设备维护。
可存储400条历史事件记录,可
以记录MESSAGE消息),WARNING警告),ALARM(报警)三种事件。
配置RS485接口,通信协议采用信息产业部标准通信协议。
.iCOM控制器强大的Teamwork群控功能。
PEX的每个模块都有独立的iCOM控制器,并且可以根据现场情况,将各模块联动与群控,同一区域可以将32套机组进行Teamwork方式统一控制管理。
实现的Teamwork群控功能包括:
1备份:
备份自动切换功能,当群组中机组发生故障时,备份机组自动投入运行,提高空调系统的可靠性;2、轮巡:
定时切换备份
机组;3、层叠:
根据机房内热负荷的变化自动控制机组中空调机的运行数量;达到节能的目的4、避免竞争运行:
避免同一机房内多台空调机同时运行在相反的运行状态(制冷/加
热、加湿/除湿),达到节能的目的。
.采用高效全调速冷凝器,噪声水平业界最低。
其机组框架由不锈钢连接件与船用等级耐腐蚀铝材组成;一体式风机组合采用独特减震设计;维护要求极低的风扇电机适用于各种
气候条件;单/双制冷回路设计;(室外冷凝器)适用于各种恶劣气候条件;可选择水平/垂直
两种方式进行(冷凝器)安装。
.标配漏水检测器,先进的漏水检测系统可以向机组或一个独立的监控系统提供声光报警信息。
当漏水告警启动时,将自动关闭加湿系统
3.4Liebert.PEX机组的节能设计
1、高能效压缩机,确保机组高能效比:
采用了世界最大的工业级别压缩机制造商谷轮公司(艾默生子公司)生产的高效涡旋式压缩机,能效比高。
涡旋压缩机的活动部件的减少使机组的噪声及震动降低很多;压缩机
的压缩过程连续、平稳;压缩机的排气过程旋转角度超过540度;在吸气及压缩过程中没有
热量交换;在压缩过程中制冷剂气流方向没有改变;减少了气流损失;涡旋式压缩机无需高、
低压阀门;减少了阀门损失,防止产生液击;启动电流低。