logwareSELECTED COMPUTER PROGRAMS FOR PLANNING.docx

上传人:b****5 文档编号:7745659 上传时间:2023-01-26 格式:DOCX 页数:72 大小:1.53MB
下载 相关 举报
logwareSELECTED COMPUTER PROGRAMS FOR PLANNING.docx_第1页
第1页 / 共72页
logwareSELECTED COMPUTER PROGRAMS FOR PLANNING.docx_第2页
第2页 / 共72页
logwareSELECTED COMPUTER PROGRAMS FOR PLANNING.docx_第3页
第3页 / 共72页
logwareSELECTED COMPUTER PROGRAMS FOR PLANNING.docx_第4页
第4页 / 共72页
logwareSELECTED COMPUTER PROGRAMS FOR PLANNING.docx_第5页
第5页 / 共72页
点击查看更多>>
下载资源
资源描述

logwareSELECTED COMPUTER PROGRAMS FOR PLANNING.docx

《logwareSELECTED COMPUTER PROGRAMS FOR PLANNING.docx》由会员分享,可在线阅读,更多相关《logwareSELECTED COMPUTER PROGRAMS FOR PLANNING.docx(72页珍藏版)》请在冰豆网上搜索。

logwareSELECTED COMPUTER PROGRAMS FOR PLANNING.docx

logwareSELECTEDCOMPUTERPROGRAMSFORPLANNING

 

SELECTEDCOMPUTERPROGRAMS

FORLOGISTICS/SUPPLYCHAINPLANNING

 

Version5.0

 

RonaldH.Ballou

WeatherheadSchoolofManagement

CaseWesternReserveUniversity

 

(C)Copyright1992-2004RonaldH.BallouAllrightsreserved

SELECTEDCOMPUTERPROGRAMS

FORLOGISTICS/SUPPYCHAINPLANNING

LOGWAREisacollectionofselectedsoftwareprogramsthatisusefulforanalyzingavarietyoflogistics/supplychainproblemsandcasestudies.Itcontainsthefollowingmodules.

Module

Page

FORECASTForecaststimeseriesdatabymeansofexponentialsmoothingandtimeseriesdecompositionmethods

5

ROUTEDeterminestheshortestpaththroughanetworkofroutes

9

ROUTESEQDeterminesthebestsequencetovisitstopsonaroute

13

ROUTERDevelopsroutesandschedulesformultipletrucksservingmultiplestops

15

INPOLFindsoptimalinventoryorderingpoliciesbasedoneconomicorderquantityprinciples

24

COGFindsthelocationofasinglefacilitybytheexactcenter-of-gravitymethod

33

MULTICOGLocatesaselectednumberoffacilitiesbytheexactcenter-of-gravitymethod

37

PMEDLocatesaselectednumberoffacilitiesbytheP-medianmethod

41

WARELOCAAwarehouselocationprogramforspecificallyanalyzingtheUsemoreSoapCompanycasestudy

45

LAYOUTPositionsproductsinwarehousesandotherfacilities

47

MILESComputesapproximatedistancebetweentwopointsusinglatitude-longitudeorlinear-gridcoordinatepoints

49

TRANLPSolvesthetransportationmethodoflinearprogramming

51

LNPROGSolvesgenerallinearprogrammingproblemsbymeansofthesimplexmethod

53

MIPROGSolvesthemixedintegerlinearprogrammingproblembymeansofbranchandbound

55

MULREGFindslinearregressionequationsbymeansofthestepwiseprocedureofregression/correlationanalysis

57

SCSIMSimulatestheflowofaproductthroughfiveechelonsofasupplychannel

62

Eachmoduleisselectedfromthefollowingmasterscreenbyclickingontheappropriatebutton.

HARDWAREREQUIREMENTS

LOGWAREisdesignedformicrocomputersoperatingunderWINDOWS98,NT,2000,orXP.Atleast16MBofRAMshouldbeinstalled.Harddrivespaceofatleast10MBshouldbeavailable.Acolormonitorcapableofproducingatleast640x480pixelsresolutionisneeded,although800x600isbetterand1024x768ispreferred.Resolutionsgreaterthan1024x768pixelsarenotsupported.Alaserprinterispreferred.Amouseisneeded.A3½floppydriveand/oracompactdiskreaderareneeded.

INSTALLINGTHESOFTWAREONAHARDDRIVE

Placetheprogramcompactdisksintheappropriatedrives.InWINDOWS,clickontheStartbuttonandthenselecttheRunoptionfrompop-upmenu.Type“X:

Setup.exe”(“X”beingtheletterdesignatedforyourCDdrive).TheprogrammayalsobeinstalledwithWindows’Start,Settings,ControlPanel,Add/RemovePrograms,Installoption.Changethesubdirectoryunderwhichtheprogramwillbeinstalledifthedefaultsubdirectoryisnotdesired.

RUNNINGTHEPROGRAMS

Aftertheprogramisinstalled,clickontheStartbuttonandselectPrograms.ChoosetheLogwareicontoactivatetheprogram.Clickonthedesiredprogrammodule.AshortcuticonontheDesktopmayalsobecreated.

EDITINGTHEDATA

Inthosemoduleswhereascreendataeditorispresent,thefirstactionistoopenadatafilebyclickingonthemodule’sStartbutton.Ifafileisnamedthatisnotinthecurrentlistoffiles,adatashellwillbecreatedintowhichanewproblemmaybeentered.Theuseoftheeditorissimpleandtransparentwithalittlepractice;however,afewcommentsaboutitsusemayhelptogetstarted.

PresstheInskeytostartanewlineofdatainamatrix.Thenormalactionistoinsertatextrowattheendofthematrix.TheAddbuttonmayalsobepressed.Thiswillallowarowtobeaddedattheendofthematrixaswellaswithinthematrix.Positionthecursorinthematrixrowwheretherowistobeadded.

PressingtheEsckeyclearsamatrixcell.

∙PressingtheDeletebuttondeletestherowinamatrixhighlightedbythecurrentcursorposition.

∙IfColumnarithmeticistobeused,highlightthematrixcolumnonwhichtheactionistoapply.

Alternatively,thedataforeachmoduleexceptSCSIMmaybecreatedandeditedwiththeuseofExcel.ItisexpectedthattheuserhasabasicknowledgeofExceluse.

COPYINGTHEINSTRUCTIONSANDTHESOFTWARE

Thissoftwareandtheassociatedinstructionsmaybecopiedaslongastheyareusedforeducationalpurposes.Allcopiedmaterialsmustdisplaythefollowingcopyrightnotices.

Copyright1992-2004RonaldH.BallouAllrightsreserved.

RonaldH.Ballouoffersthissoftwareforeducationalpurposesonlyanddoesnotwarrantthesoftwaretobefitforanyparticularapplication.TheuseragreestoreleaseRonaldH.Balloufromallliabilities,expenses,claims,actions,and/ordamagesofanykindarisingdirectlyorindirectlyoutoftheuseofthesecomputerprograms,theperformanceornonperformanceofsuchcomputerprograms,andthebreachofanyexpressedorimpliedwarrantiesarisinginconnectionwiththeiruse.Iftheseconditionsarenotacceptable,thesoftwareshouldbereturnedtoRonaldH.Ballou.

ProfessorRonaldH.Ballou

WeatherheadSchoolofManagement

CaseWesternReserveUniversity

Cleveland,OH44106USA

Tel:

(216)368-3808

Fax:

(216)368-6250

E-mail:

Ronald.Ballou@Weatherhead.CWRU.edu

Uptodateinformationaboutthesoftwaremaybefoundatwww.PrenH

INSTRUCTIONSFOREXPONENTIALSMOOTHING

ANDTIMESERIESDECOMPOSITIONFORECASTING

FORECAST

FORECASTiscomputersoftwarethatforecastsfromtimeseriesdatabymeansofexponentialsmoothingand/ortimeseriesdecompositionmethods.Inlogistics/SC,suchtimeseriesmaybeproductsales,leadtimes,pricespaidforgoods,orshipments.Thephilosophyoftimeseriesforecastingistoprojectanhistoricalpatternofthedataovertime,and,ifpresent,accountfortrendandseasonality.Exponentialsmoothingisamovingaverageapproachthatprojectstheaverageofthemostrecentdataandadaptstheforecasttochangingdataastheyoccur.Ontheotherhand,thetimeseriesdecompositionapproachrecognizesthatmajorreasonsforvariationindataovertimeareduetotrendandseasonalcomponents.Eachoftheseisestimatedandcombinedtoproduceaforecast.ForbackgroundinformationontheforecastmodelsusedinFORECAST,seeChapter8oftheBusinessLogistics/SupplyChainManagement5etextbook.

TorunFORECAST,selecttheappropriatemodulefromtheLOGWAREmastermenu.Openanexistingfileorselectanewone.Prepareorchangethedatabase.Selecttheappropriatemodeltype,whichmaybeeithersomeformofanexponentialmodel(Levelonly,Level-Trend,etc.)orthetimeseriesdecompositionmodel.ClickonSolvetogenerateaforecast.

INPUT

Theinputtobothforecastingmodulesconsistsofthetime-orderedseriesofdata,rankedfromthemosthistorictothemostrecentobservations,andvariousparametervaluesthatguidetheexecutionofthemodels.Thedimensionsofthemodelsallowobservationsforupto200periodsandaforecastofupto50periods.Bothmodeltypesrunfromthesamedatabasealthoughsomeoftheparametersarenotusedinthetimeseriesdecompositionmodel.

ParametersandLabels

Thisportionofthescreensetstheparametersforboththeexponentialsmoothingandtimeseriesdecompositionmodels.Theseguidetheoverallactionofthemodels.Considereachelementonthisscreen.

Problemlabel.Thisisalabelgiventotheproblemyouaresolving.WARNING:

Donotusecommas(,)ordoublequotationmarks(")inthelabelsincethiswillcauseanerrorinreadingthedatafile.

Numberofdatapoints.Specifythenumberofdataperiodsinthetimeseries.Upto200pointsareallowed.Besurethatthenumberofpointsspecifiedherematchesthenumberofdatapointsactuallyenteredinthetimeseries.

Initializationperiod.Theinitializationperiodisthenumberoftheoldestdatapointsusedtodeterminestartingvaluesfortheexponentialsmoothingmodel.Aminimumof3periodsofdatashouldbedeclaredforthispurpose.Ifaseasonalmodelistobeused,atleastthenumberofperiodsinonefullseasonalcyclemustbespecified.

Errorstatistics.Thenumberofdataperiodsneededtocomputeforecasterrorstatisticsisreferredtoasthevalidationperiod.Theseerrorstatisticsarethemeanabsolutedeviation(MAD),thebias(BIAS),andtherootmeansquareerror(RMSE).ThevalidationperiodisthelastNperiodsofdata.Enoughdatapointsshouldbeusedfromthisvalidationperiodtostrikeareasonableaverageforthesestatistics.

MADisdefinedastheaverageoftheabsolutedifferencesbetweentheactualvaluesandtheforecastvaluesforthevalidationperiod.BIASistheaverageofthedifferencesbetweenactualandforecastvaluesforthevalidationperiod.RMSEissquarerootoftheaverageofthesquareddifferencesbetweentheactualandtheforecastvaluesforthevalidationperiod.

Modeltype.Selectingthemodeltypereferstotheexponentialsmoothingmodelorthetimeseriesdecompositionmodel.Therearefourvariationsoftheexponentialsmoothingmodelforbestrepresentingthecharacterofthetimeseries.ThesearetheLevelonly,Level-Trend,Level-Seasonal,andLevel-Trend-Seasonal.Selectthetypethatbestrepresentsthedata.Alternately,selectthetimeseriesdecompositionmodel.Smoothingconstantsearch.Whenoneoftheformsoftheexponentialmodelisselected,indicatewhetherasearchforthesmoothingconstantsistobeperformedusingFORECAST.Ifnot,thesmoothingconstantsforthemodeltypeselectedmustbespecified.

IfFORECASTistosearch

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 电力水利

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1