人教版八年级上册数学知识点归纳.docx
《人教版八年级上册数学知识点归纳.docx》由会员分享,可在线阅读,更多相关《人教版八年级上册数学知识点归纳.docx(10页珍藏版)》请在冰豆网上搜索。
人教版八年级上册数学知识点归纳
新人教版八年级数学上册知识点总结(上)(含思维导图)
因式分解:
1.因式分解:
把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:
因式分解与乘法是相反的两个转化.
2.因式分解的方法:
常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.
3.公因式的确定:
系数的最大公约数·相同因式的最低次幂.
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:
一提取、二公式、三分组、四十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式.
6.因式分解的解题技巧:
(1)换位整理,加括号或去括号整理;
(2)提负号;
(3)全变号;
(4)换元;
(5)配方;
(6)把相同的式子看作整体;
(7)灵活分组;
(8)提取分数系数;
(9)展开部分括号或全部括号;
(10)拆项或补项.
3.对于分式的两个重要判断:
(1)若分式的分母为零,则分式无意义,反之有意义;
(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:
若分式的分子为零,而分母也为零,则分式无意义.
4.分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(2)注意:
在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.
5.分式的约分:
把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:
分式约分前经常需要先因式分解.
6.最简分式:
一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:
分式计算的最后结果要求化为最简分式.
10.分式的通分:
根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:
分式的通分前要先确定最简公分母.
11.最简公分母的确定:
系数的最小公倍数·相同因式的最高次幂.
13.含有字母系数的一元一次方程:
在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:
在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.
14.公式变形:
把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:
公式变形的本质就是解含有字母系数的方程.特别要注意:
字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.
15.分式方程:
分母里含有未知数的方程叫做分式方程;注意:
以前学过的,分母里不含未知数的方程是整式方程.
16.分式方程的增根:
在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:
在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.
17.分式方程验增根的方法:
把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:
由此可判断,使分母的值为零的未知数的值可能是原方程的增根.
18.分式方程的应用:
列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.
数的开方
2.平方根的性质:
(1)正数的平方根是一对相反数;
(2)0的平方根还是0;
(3)负数没有平方根.
8.立方根的性质:
(1)正数的立方根是一个正数;
(2)0的立方根还是0;
(3)负数的立方根是一个负数.
三角形
几何A级概念:
(要求深刻理解、熟练运用、主要用于几何证明)
几何B级概念:
(要求理解、会讲、会用,主要用于填空和选择题)
一基本概念:
三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.