控制理论与应用.docx

上传人:b****6 文档编号:7397279 上传时间:2023-01-23 格式:DOCX 页数:26 大小:28.43KB
下载 相关 举报
控制理论与应用.docx_第1页
第1页 / 共26页
控制理论与应用.docx_第2页
第2页 / 共26页
控制理论与应用.docx_第3页
第3页 / 共26页
控制理论与应用.docx_第4页
第4页 / 共26页
控制理论与应用.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

控制理论与应用.docx

《控制理论与应用.docx》由会员分享,可在线阅读,更多相关《控制理论与应用.docx(26页珍藏版)》请在冰豆网上搜索。

控制理论与应用.docx

控制理论与应用

控制理论与应用_2019

第一章绪论

1.1概述

系统:

自动控制:

在没有人直接干预的情况下,通过控制装置使被控对象或过程自动按照

预定的规律运行,使之具有一定的状态和性能。

图1-2所示为一液位控制系统,试说明该控制系统的工作原理。

1

1-2水位自动控制系统工作原理:

(1)在控制器中标定好期望的水位高度,

(2)当水位超过或

低于标定值时,高度误差被浮球检测出来,误差信号送给控制器。

(3)控制器按减小误差方向控制进水阀门的开启。

(4)反复检测和控制,直到误差为零。

出水阀

1.2自动控制理论的内容

经典控制理论:

以传递函数为基础,研究单输入-单输出控制系统的分析和设计。

现代控制理论:

以状态空间为基础,研究多输入-多输出、变系数、非线性等控制

系统的分析和设计。

1.3自动控制系统的分类

1.3.1按信号传递路径分类

1、开环控制系统2、闭环控制系统

1.3.2按控制作用的特点(即按给定量的运动规律)分类

恒值控制系统(自动镇定系统):

系统任务是保证系统在任何扰动作用下,输出量

以一定精度接近给定值,而给定值一般不变或变化缓慢。

随动系统(自动跟踪系统):

系统任务是在各种情况下,输出量以一定精度跟随给

定量的变化(给定量的变化是随机的)。

程序控制系统:

系统任务是被控制量按照事先给定的规律或程序进行变化。

Review

自动控制是指在通过控制装置使被控对象或过程自动按

照预定的规律运行,使之具有一定的状态和性能。

1经典控制理论以为基础,研究单输入单输出控制系统的分析与设计。

2现代控制理论以为基础,研究多输入多输出、变系数、非线性等控制系

统的分析和设计。

2

开环控制系统缺乏精确性和适应性,其控制精度取决于控制器及被控对象的参数稳

定性。

3

反馈是指输出量通过适当的测量装置将测量信号的使之与输入量进行比较。

3开环控制系统缺乏精确性和适应性其控制精度取决于控制器及被控对象的

参数稳定性。

3

闭环控制系统与开环控制系统的主要差别在于闭环控制系统有一条从系统输出端经过测量元件到输入端的反馈通路。

3基于负反馈基础上的“这一原理组成的系统称为反馈控制系统。

3

自动控制系统按输入量变化的规律可分为恒值控制系统(自动镇定)、(随动系统(自动跟踪系统)和(程序控制系统)5

在恒值控制系统中,输出量以一定的精度接近给定值。

5在随动系统中,输出量以一定的精度跟随给定量的变化。

5控制系统品质指标的基本要求是稳定性,动态特性和稳态特性7一个控制系统要能起控制作用,系统必须是稳定的,而且必须满足一定的稳定裕量。

7

自动控制系统的(稳定性)是系统工作的必要条件7

第二章控制系统的数学模型

2.1系统微分方程的建立

2.2传递函数

2.2.1定义

在线性定常系统中,初始条件全为零时,系统或部件输出的拉氏变换与输入的拉氏

变换之比称为系统或部件的传递函数。

2.2.3传递函数的性质

2.2.4典型环节及其传递函数

2.3方块图

2.3.3方块图化简法则

方块图的化简步骤可以有不同,但在简化时需要保持信号传送过程中的数学关系不

变。

Y(s)Y(s)

例题图所示系统,试写出R(s)和N(s)的传递函数。

17消去反馈环

1

K

K122

ss1

K1K2Y(s)3

1R(s)Ts(T1)s2sK1K2

K

1K122

ss1Ts

K2K3TsY(s)

32

N(s)Ts(T1)ssK1K2

C(s)/R(s)

例下图所示系统的闭环传递函数为(

G1G2

1G1H1G2H2)19

分支点后移或合成点前移

2.4信号流图

2.4.1基本概念

2.4.2信号流图中使用的术语

输入节点:

输出节电:

开通路:

与任意节点仅相遇一次的通路

前向通路:

起始于输入节点,终止于输出节点的开通路闭通路(环):

起始及终止于同一节点,并与其他节点相遇仅一次的通路。

称回路。

互不接触环:

两个以上不存在公共节点的环。

通路增益:

例系统的信号流图如下图所示,其共有(9)个回路

20

GG5

L1=-G2H1\L2=-G4H2\L3=-G6H3\L4=-G3G4G5H4

L5=G8H4H1L6=-G7G3G4G5G6H5L7=-G8G6H5G1L8=G7H1G8G6H5L9=-G1G2G3G4G5G6H5

例一控制系统的信号流图如题图所示,试写出该系统中两两互不接触回路的增益。

20

[G2H1G4H4;G2G3H3G4H4;G1G2H2G4H4。

]

例某一控制系统的信号流图如题图所示,试写出该系统中单独回路和前向通道的

增益。

20

4

7个单独回路:

L1G1H1,L2G2H2,L3G3H3,L4G2H4,

L5G4H4H1,L6G5H3H4,L7G4H2G5H3H4H1

5条前向通道:

P1G1G2G3,P2G4G3,P3G1G5,P4G4H2G5,P5G4H4G5

2.4.5梅逊增益公式

例一控制系统的信号流图如题图所示,试写出该系统的传递函数Y(s)

R(s)。

20

系统的输入输出量之间有:

2条前向通道,其总传输分别为P1G1(s)G2(s)G3(s)和P2G1(s)G4(s)

L1G1(s)G2(s)H1(s),L2G2(s)G3(s)H2(s)

5个相互接触的单独回路:

L3G1(s)G2(s)G3(s),L4G1(s)G4(s)

L5G1(s)G4(s)H2(s)G2(s)H1(s)

没有互不接触回路。

因此信号流图的特征式为

1(L1L2L3L4L5)

1G1(s)G2(s)H1(s)G2(s)G3(s)H2(s)

G1(s)G2(s)G3(s)G1(s)G4(s)G1(s)G4(s)H2(s)G2(s)H1(s)

前向通道P1与P2与所有回路都接触,所以121,根据梅逊公式,系统传递函数为

G(s)

G(s)G2(s)G3(s)G1(s)G4(s)PY(s)P

11221R(s)

Review

控制系统的微分方程11控制系统最基本的数学模型形式是(微分方程)11从元件或系统所依据的通过分析和推导,建立数学模型的

方法称为分析法。

11在线性定常系统中,当系统或部件输出的拉氏变换与输入的

拉氏变换之比称为系统或部件的传递函数。

13

在传递函数的定义中,所谓零初始条件是指(当t

数为零。

)13

传递函数只与系统或元件本身内部结构参数有关,与输入量、等外部

因数无关。

14

传递函数不能反映系统或元件的,物理性质截然不同的系统或元件可

以有相同的传递函数。

14

传递函数只与系统或元件有关,与输入量、初始条件等外部因

数无关。

14

传递函数仅适用于线性定常14

下列说法正确的是(传递函数不能反映系统或元件的物理组成。

)(传递函数与

系统的微分方程之间有相通性,两者可以互相转换)14方块图化简时需要保持信号传递过程中的不变。

17

第三章控制系统的时域分析

4.3线性系统稳定的充分必要条件

表4-1线性系统稳定的充分必要条件为系统特征方程式的所有根都位于复平面虚

轴的左面。

4.5劳斯判据4.5.2劳斯判据

劳斯稳定判据充分必要条件:

(1)系统特征式的各项系数全部同号,且无一系数为零

(2)劳斯表首列不改变符号注意

1)劳斯稳定判据以闭环特征方程判定闭环系统稳定性2)劳斯表中第一列元素符号变化的次数,等于系统特征方程所具有的正实部根的

数目

4.5.3劳斯判据的特殊情况

情况1劳斯表某行第一列的系数等于零,此行其余项不全为零或无其他元素。

解法1:

以一无穷小的正数代替0,然后继续排劳斯表。

例设系统特征方程为:

s3ss3s10,试用Routh判据确定系统正实部根的个数。

57

由Routh表知,第3行第1列的元为零,其余各元不为零,故可用一个很小的正数代替,其Routh表为

4

3

2

s4111s333s21

s13s01

因很小,3

3

3

0,Routh表第1列变号2次,故系统有2个正实部根。

情况2劳斯表任一行的所有元素都为零。

解法:

利用全零行上面一行的所有元素组成辅助方程,辅助方程对S求导一次后所得的方程的系数代替零行的系数,然后继续排列。

32

例已知某单位负反馈系统的开环传递函数为G(s)K(s1)(sas2s1),若系

统以2rad/s的频率作等幅振荡,则K的值为

(2)59

4.5.4劳斯稳定判据的应用

G(s)

例设单位负反馈系统的开环传递函数为:

系统传递函数,并确定K的值使系统稳定。

60系统闭环传递函数为:

K

s(s4)(s10),试写出闭环

G(s)

3

2

K

s314s240sK

故闭环特征方程为s14s40sK0,列出劳斯阵列

s3s2s1s0

14014K

40K/14

K

为使系统稳定,劳斯阵列中第一列元素须全为正数。

因此有

K

0,K014

所以K使系统稳定的取值范围为0K560。

40

例已知系统的闭环特征方程为s0.5s2s3s20,系统的闭环极点中有(0)个极点的实部位于(0,-1)之间。

62

4

3

2

4.7稳态误差定义和控制系统分类

4.7.1稳态误差定义

从式4-35可以看到系统的稳态误差不仅与系统参数、结构有关,而且与参考输入

R(T)有关。

4.7.2控制系统的类型

系统类型定义开环极点、零点

4.8稳态误差与稳态误差系数

4.8.1稳态位置误差与位置误差系数

2、稳态速度误差与速度误差系数3、稳态加速度误差与加速度误差系数

例已知某单位负反馈系统在单位阶跃输入信号作用下的稳态误差为零,且系统闭环特征

方程为s4s6s40,则系统的开环传递函数不可能为G(s)(s34s26s1)67

3

2

G(s)

例单位负反馈系统的开环传递函数为:

态误差系数

4(s3)

s2(s1)(s4)(s8),试求系统的稳

Kp,Kv,Ka

64-67

KplimG(s)lim

s0

s0

4(s3)

2

s(s1)(s4)(s8)4s(s3)

s2(s1)(s4)(s8)

KvlimsG(s)lim

s0

s0

4s2(s3)

KalimsG(s)lim20.375

s0s0s(s1)(s4)(s8)

2

4.14一阶系统的动态响应

4.14.2一阶系统的单位阶跃响应

例已知某单位负反馈系统的开环传递函数为G(s),若取误差限0.05,则调

整时间

ts为(3T)78

4.16二阶系统的动态响应

例已知二阶系统的单位脉冲响应为:

y(t)100e

升时间。

0.3t

sin0.4t,试求系统的超调量和上

d0.4,0.6,cos10.9268

超调量:

p9.49%上升时间:

tr5.533s

2n

G(s)2

2

s2snn,为使系统阶跃响应有5%的超调例系统的闭环传递函数为:

量和2秒的过渡过程时间(误差限=5%),试求和

n的值。

84

p0.050.69

n2.17ts2s0.05

n2.90ts2s0.02

4.17高阶系统的动态响应

4.17.1主导极点、附加零点极点、偶极子

Review

由于扰动作用,使系统的工作状态发生变化,当扰动消失后,如果系统的状态能回复到

系统的稳态误差不仅与系统参数、结构有关,而且与有关。

63对于典型Ⅱ型系统,下列说法正确的是(能无静差地跟随阶跃信号)(能无静差地

跟随斜坡信号)67

系统的阻尼比愈小,则(最大超调量愈大)(振荡次数愈多)84

原来的平衡状态53

线性系统稳定的充分必要条件是系统特征方程式的所有根都位于复平面虚轴的面。

54

线性系统稳定的充分必要条件为(系统特征方程式的所有根的实部均小于零)(系统特征方程式的所有实根小于零,所有的复根具有负实部)54线性系统稳定的条件是系统特征方程式的所有根都位于复平面虚轴的左面。

54

线性系统的稳定性取决于系统的,与系统的输入信号无关。

54下列有关劳斯稳定判据的说法中正确的有(系统稳定的必要条件是系统特征方程的所有系数严格为正。

)(系统稳定的充分必要条件是劳斯表首列元素不为零,且不改变符号。

)56-57

劳斯判据以闭环特征方程判定闭环系统稳定性。

57

劳斯表中第一列元素符号变化的次数,等于系统特征方程所具有的正实部根数目。

57

劳斯表一行中所有各数都乘上或除以一个不影响系统稳定性的判断。

57

第四章根轨迹法

5.1根轨迹定义与幅相条件

根轨迹法是利用开环零点、极点在S平面上的分布,通过图解的方法求取闭环极

点的位置。

5.1.1根轨迹定义

结论:

凡是根轨迹上的点必定满足幅值条件式和相角条件式,凡是补根轨迹上的点

必定满足幅值条件式和相角条件式,反之,满足相角条件的点必定是根轨迹或补根轨迹上的点。

5.2全根轨迹的绘制

5.2.2按基本规则绘制

G(s)

例单位负反馈系统开环传递函数为:

K

s(s1)(s2),试确定闭环系统根轨迹随

K值变化的渐近线。

120

G(s)

例已知单位负反馈系统的开环传递函数为

统根轨迹的大致图形(0a)。

120

(sa)4s2(s1),试绘制以a为参变量的系

G(s)

例知单位负反馈系统的开环传递函数为

致图形(0K)。

120

K

s(s22s2),试绘制系统根轨迹的大

例如图所示控制系统,试绘制参变量K从0变到时的根轨迹。

120

R

5.4开环零极点的增加及移动对根轨迹的影响

5.4.1增加G(S)H(S)零极点的影响

一般结论:

给开环传递函数G(S)H(S)增加极点的作用是使根轨迹向右半S平

面移动,使系统稳定性变差。

一般结论:

给开环传递函数G(S)H(S)增加零点的作用是使根轨迹向左半S平

面移动,使系统稳定性变好。

Review

根轨迹法是利用s平面上的分布,通过图解的方法求取闭环极点

的位置。

95

满足相角条件的点必定是上的点。

99实轴上根轨迹右边的开环实极点与实零点的个数和为。

103给开环传递函数增加稳定极点s平面移动。

132给开环传递函数增加稳定极点的作用是使根轨迹向s平面移动。

132给开环传递函数增加稳定零点s平面移动。

133给开环传递函数增加稳定零点的作用是使根轨迹向s平面133

第五章频率响应法

6.1频率特性

6.1.1定义

系统的频率特性定义为输入函数是正弦函数时,系统输入与输出的稳态分量之比。

6.1.2频率特性的性质

1.由于传递函数仅仅取决于系统的结构及元件参数,而与系统的外界激励及各初始条

件无关,所以频率特性也是如此。

2.M(JW)|M(JW)|和Q(JW)都是频率W的函数,他们都随输入频率的变化而

变化,而与输入幅值无关。

6.2极坐标图

例当从变化时,惯性环节的极坐标图为一个(整圆)145

6.2.3极坐标图的一般绘制规则

1.奈氏轨线的起始点(W=0)仅与系统的类型以及增益常数有关–90*V不同轨线的起

2.奈氏轨线的终止点(W=无穷大),对于N>M系统,–(N-M)*90的角度趋向于原点,例已知某系统的开环频率特性曲线如下图所示,该系统为(Ⅱ型系统)

149

6.3对数频率特性图

例当系统增设比例环节后,(系统的L()平移)(系统的()不变)1516.3.3绘制对数频率特性曲线的一般步骤

1.把G(S)H(S)化成公式6-43所示的标准形式2.求20LGK

3.求出基本因子的角频率

4.过20LGK与W=1的交点,作一斜率为-20V(DB/DEC)的直线,然后从最低频率到最高

频,通过一个简单零点角频率则把直线斜率增加20DB/DEC,通过一个简单极点角频率则把直线斜率增加-20DB/DEC,通过一个二次震荡因子角频率,则把直线斜率增加-40DB/DEC,

5.先画出各基本因子的相频特性曲线,然后把各基本因子的相频特性曲线相加,就得到

G(S)H(S)的相频特性曲线.

6.3.5几个术语

增益剪切频率WCL(W)=0点的频率相位剪切频率WG相位=-180点的频率

例已知最小相位开环系统Bode图的对数幅频特性图如题图所示,试求该系统的开环传

递函数。

155

开环传递函数:

G(s)

K

,K100

11s1s112

6.5稳定性分析--奈魁斯特稳定判据

奈魁斯特从频率响应的观点出发,在复变函数的幅角原理基础上,提出了应用系统

的开环频率特性判闭环系统稳定性的准则。

6.5.4奈魁斯特判据

1.F(S)平面和奈魁斯特判据:

假如S沿着奈魁斯特路线绕一圈,Tf绕原点的圈数则为F(S)在右半S平面

内零点与极点的个数之差即N=Z-P式6-69当Z=0时,系统稳定,反之系统是不稳定的。

2.奈魁斯特判据和G(S)H(S)平面:

N0—G(JW)H(JW)轨线绕原点的圈数N-1---G(JW)H(JW)轨线绕(-1J0)的圈数

Z0---G(JW)H(JW)在右半S平面内零点的数目

Z-1---F(S)=1+G(S)H(S)在右半S平面内零点的数目,即闭环极点数.P0---G(JW)H(JW)在右半S平面内极点的数目

P-1----F(S)=1+G(S)H(S)在右半S平面内极点的数目

假如S沿着奈魁斯特路线绕一圈,G(JW)H(JW)轨线绕(-1,0J)点的圈

数则为F(S)在右半S平面内零点与极点的个数之差即N-1=Z-1-P-1式6-57当Z-1=0时,系统稳定,反之系统是不稳定的。

当我们得到G(S)H(S)的轨线G(JW)H(JW)后,如果只知道G(S)

H(S)在右半S平面内零点的个数,即知道Z0,而不知道G(S)H(S)在右半S平面内极点的个数P0,那么我们可首先利用关系式6-58求得P0,因为P-1=P0,则可由式6-57求得Z-1公式6-59例某系统的开环传递函数为G(s)H(s),其在右半s平面内的极点数为P,当s沿奈魁

斯特路线转一圈时,G(s)H(s)轨线G(j)H(j)绕(-1,j0)点N圈,则下列说法正确

的是(若N=-P,则系统是稳定的)161

6.5.5在S=0及S-》OO的奈魁斯特轨线的画法

1.在S=0存在极点时

当S从-J0转到+J0时,G(S)H(S)的奈魁斯特轨线以半径为无穷大,顺时

针转过VPI角。

例已知某Ⅱ型系统的开环传递函数为G(s)H(s),当s从-j0转到+j0时,G(s)H(s)的

奈氏曲线将以半径为无穷大(顺时针转过2弧度)162

2.在S->无穷大的存在极点时奈魁斯特轨线

当S从-JOO转到+JOO时,对于N》M的系统,G(S)H(S)的奈魁斯特轨

线以半径为无穷小,逆时针转过(N-M)VPI角。

例一系统的开环传递函数为G(s)H(s),其分母的阶次为n,分子的阶次为m,且n>m。

当s沿奈魁斯特路线从j到j时,G(s)H(s)的奈氏曲线以无穷小半径,绕原点(逆时针转过(nm)弧度)163

6.5.6奈魁斯特稳定判据小结

当S沿着奈魁斯特路线绕一圈,G(S)H(S)的轨线G(JW)H(JW)绕(-1,

0J)点为N-1圈数,则有:

(1)N-1=0,假如P0=P-1=0,则系统是稳定的,反之,系统不稳定

(2)N-1《0,假如N-1=P-1,则系统是稳定的,反之,系统不稳定(3)N-1》0,系统不稳定

(4)如果G(S)H(S)的奈魁斯特轨线通过(-1,0J)点L次,则闭环有L个极

点在S平面虚轴上。

6.5.7一种简易的判断N-1值的方法

两个特性:

1.轨线在(-1,J0)点右边穿越负实轴的次数对N-1值不起作用2.轨线在(-1,J0)点左边穿越负实轴,将影响N-1值

假如用N+表示轨线在(-1,J0)点左边自下向上穿越负实轴的次数,用N-表示轨线在

(-1,J0)点左边自上向下穿越负实轴的次数,则有N-1=N+-N-

6.5.8奈魁斯特判据应用举例

例6-5例6-6例6-7例6-8

6.5.10波特图与奈魁斯特判据

对照波特图与极坐标图,可有下列对应关系:

波特图极坐标图

0DB线(幅频特性图)单位圆

0DB线以下区域单位圆以内区域0DB线以上区域单位圆以外区域-180度线(相频特性图)负实轴

因此在极坐标图上自下向上地穿越(-1,J0)点左边的负实轴,相当于相频特性图曲线自上而下地穿越-180度线(当L(W))0DB)

结论:

当幅频特性小于0DB时,相频特性图曲线穿越-180度线的次数不影响N-1

的值,当幅频特性大于0DB时,相频特性图曲线穿越-180度线的次数将影响N-1的值。

令幅频特性在0DB线上时,相频特性图曲线自上而下穿越-180度线的次数为N+,相频特性图曲线自下而上穿越-180度线的次数为N-,则有

N-1=2(N+-N-)

再利用公式Z-1=N-1+P-1就可求的闭环传递函数在右半S平面的极点数。

例6-10(A)

例在判断奈魁斯特轨线包围(-1,j0)点的圈数N1时,(当幅频特性大于0dB时,相频特

性曲线穿越-180线的次数影响N1值。

)168

已知某控制系统的开环频率特性的Bode图如题图所示,试用Nyquist稳定判据判断闭

环系统的稳定性。

168

|G|dB

0.20.40.60.81246810

∠G

0.2

0.4

0.6

0.81

w

2

4

6

8

10

6.5.11条件稳定系统

条件稳定系统:

一系统如对某范围的开环增益K是稳定的,而当K增大到足够大,或减小到

足够小后,则成为

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1