研究生考试农学复习资料.docx

上传人:b****5 文档编号:7370308 上传时间:2023-01-23 格式:DOCX 页数:11 大小:26.63KB
下载 相关 举报
研究生考试农学复习资料.docx_第1页
第1页 / 共11页
研究生考试农学复习资料.docx_第2页
第2页 / 共11页
研究生考试农学复习资料.docx_第3页
第3页 / 共11页
研究生考试农学复习资料.docx_第4页
第4页 / 共11页
研究生考试农学复习资料.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

研究生考试农学复习资料.docx

《研究生考试农学复习资料.docx》由会员分享,可在线阅读,更多相关《研究生考试农学复习资料.docx(11页珍藏版)》请在冰豆网上搜索。

研究生考试农学复习资料.docx

研究生考试农学复习资料

  第一章绪论

  一、生物化学的的概念:

  生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

  二、生物化学的发展:

  1.叙述生物化学阶段:

是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

  2.动态生物化学阶段:

是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

  3.分子生物学阶段:

这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

  三、生物化学研究的主要方面:

  1.生物体的物质组成:

高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

  2.物质代谢:

物质代谢的基本过程主要包括三大步骤:

消化、吸收→中间代谢→排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

  3.细胞信号转导:

细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

  4.生物分子的结构与功能:

通过对生物大分子结构的理解,揭示结构与功能之间的关系。

  5.遗传与繁殖:

对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

  第二章蛋白质的结构与功能

  一、氨基酸:

  1.结构特点:

氨基酸(aminoacid)是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

  2.分类:

根据氨基酸的R基团的极性大小可将氨基酸分为四类:

①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。

  二、肽键与肽链:

  肽键(peptidebond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。

氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。

每条多肽链都有两端:

即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端→C端。

  三、肽键平面(肽单位):

  肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个α碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。

  四、蛋白质的分子结构:

  蛋白质的分子结构可人为分为一级、二级、三级和四级结构等层次。

一级结构为线状结构,二、三、四级结构为空间结构。

  1.一级结构:

指多肽链中氨基酸的排列顺序,其维系键是肽键。

蛋白质的一级结构决定其空间结构。

  2.二级结构:

指多肽链主链骨架盘绕折叠而形成的构象,借氢键维系。

主要有以下几种类型:

  ⑴α-螺旋:

其结构特征为:

①主链骨架围绕中心轴盘绕形成右手螺旋;②螺旋每上升一圈是3.6个氨基酸残基,螺距为0.54nm;③相邻螺旋圈之间形成许多氢键;④侧链基团位于螺旋的外侧。

  影响α-螺旋形成的因素主要是:

①存在侧链基团较大的氨基酸残基;②连续存在带相同电荷的氨基酸残基;③存在脯氨酸残基。

  ⑵β-折叠:

其结构特征为:

①若干条肽链或肽段平行或反平行排列成片;②所有肽键的C=O和N—H形成链间氢键;③侧链基团分别交替位于片层的上、下方。

  ⑶β-转角:

多肽链180°回折部分,通常由四个氨基酸残基构成,借1、4残基之间形成氢键维系。

  ⑷无规卷曲:

主链骨架无规律盘绕的部分。

  3.三级结构:

指多肽链所有原子的空间排布。

其维系键主要是非共价键(次级键):

氢键、疏水键、范德华力、离子键等,也可涉及二硫键。

  4.四级结构:

指亚基之间的立体排布、接触部位的布局等,其维系键为非共价键。

亚基是指参与构成蛋白质四级结构的而又具有独立三级结构的多肽链。

  五、蛋白质的理化性质:

  1.两性解离与等电点:

蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸一样具有两性解离的性质。

蛋白质分子所带正、负电荷相等时溶液的pH值称为蛋白质的等电点。

  2.蛋白质的胶体性质:

蛋白质具有亲水溶胶的性质。

蛋白质分子表面的水化膜和表面电荷是稳定蛋白质亲水溶胶的两个重要因素。

  3.蛋白质的紫外吸收:

蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强,最大吸收峰为280nm。

  4.蛋白质的变性:

蛋白质在某些理化因素的作用下,其特定的空间结构被破坏而导致其理化性质改变及生物活性丧失,这种现象称为蛋白质的变性。

引起蛋白质变性的因素有:

高温、高压、电离辐射、超声波、紫外线及有机溶剂、重金属盐、强酸强碱等。

绝大多数蛋白质分子的变性是不可逆的。

  六、蛋白质的分离与纯化:

  1.盐析与有机溶剂沉淀:

在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。

常用的中性盐有:

硫酸铵、氯化钠、硫酸钠等。

盐析时,溶液的pH在蛋白质的等电点处效果最好。

凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。

  2.电泳:

蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。

电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。

  3.透析:

利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。

  4.层析:

利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离。

主要有离子交换层析,凝胶层析,吸附层析及亲和层析等,其中凝胶层析可用于测定蛋白质的分子量。

  5.超速离心:

利用物质密度的不同,经超速离心后,分布于不同的液层而分离。

超速离心也可用来测定蛋白质的分子量,蛋白质的分子量与其沉降系数S成正比。

第五章糖代谢

  一、糖类的生理功用:

  ①氧化供能:

糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。

②作为结构成分:

糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。

③作为核酸类化合物的成分:

核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。

④转变为其他物质:

糖类可经代谢而转变为脂肪或氨基酸等化合物。

  二、糖的无氧酵解:

  糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。

其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。

  糖的无氧酵解代谢过程可分为四个阶段:

  1.活化(己糖磷酸酯的生成):

葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。

这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。

  2.裂解(磷酸丙糖的生成):

一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:

F-1,6-BP→磷酸二羟丙酮+3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。

  3.放能(丙酮酸的生成):

3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:

3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。

此阶段有两次底物水平磷酸化的放能反应,共可生成2×2=4分子ATP。

丙酮酸激酶为关键酶。

  4.还原(乳酸的生成):

利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。

即丙酮酸→乳酸。

  三、糖无氧酵解的调节:

  主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。

己糖激酶的变构抑制剂是G-6-P;肝中的葡萄糖激酶是调节肝细胞对葡萄糖吸收的主要因素,受长链脂酰CoA的反馈抑制;6-磷酸果糖激酶-1是调节糖酵解代谢途径流量的主要因素,受ATP和柠檬酸的变构抑制,AMP、ADP、1,6-双磷酸果糖和2,6-双磷酸果糖的变构激活;丙酮酸激酶受1,6-双磷酸果糖的变构激活,受ATP的变构抑制,肝中还受到丙氨酸的变构抑制。

  四、糖无氧酵解的生理意义:

  1.在无氧和缺氧条件下,作为糖分解供能的补充途径:

⑴骨骼肌在剧烈运动时的相对缺氧;⑵从平原进入高原初期;⑶严重贫血、大量失血、呼吸障碍、肺及心血管疾患所致缺氧。

  2.在有氧条件下,作为某些组织细胞主要的供能途径:

如表皮细胞,红细胞及视网膜等,由于无线粒体,故只能通过无氧酵解供能。

  五、糖的有氧氧化:

  葡萄糖在有氧条件下彻底氧化分解生成C2O和H2O,并释放出大量能量的过程称为糖的有氧氧化。

绝大多数组织细胞通过糖的有氧氧化途径获得能量。

此代谢过程在细胞胞液和线粒体内进行,一分子葡萄糖彻底氧化分解可产生36/38分子ATP。

糖的有氧氧化代谢途径可分为三个阶段:

  1.葡萄糖经酵解途径生成丙酮酸:

  此阶段在细胞胞液中进行,与糖的无氧酵解途径相同,涉及的关键酶也相同。

一分子葡萄糖分解后生成两分子丙酮酸,两分子(NADH+H+)并净生成2分子ATP。

NADH在有氧条件下可进入线粒体产能,共可得到2×2或2×3分子ATP。

故第一阶段可净生成6/8分子ATP。

  2.丙酮酸氧化脱羧生成乙酰CoA:

  丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化下氧化脱羧生成(NADH+H+)和乙酰CoA。

此阶段可由两分子(NADH+H+)

  产生2×3分子ATP。

丙酮酸脱氢酶系为关键酶,该酶由三种酶单体构成,涉及六种辅助因子,即NAD+、FAD、CoA、TPP、硫辛酸和Mg2+。

  3.经三羧酸循环彻底氧化分解:

  生成的乙酰CoA可进入三羧酸循环彻底氧化分解为CO2和H2O,并释放能量合成ATP。

一分子乙酰CoA氧化分解后共可生成12分子ATP,故此阶段可生成2×12=24分子ATP。

  三羧酸循环是指在线粒体中,乙酰CoA首先与草酰乙酸缩合生成柠檬酸,然后经过一系列的代谢反应,乙酰基被氧化分解,而草酰乙酸再生的循环反应过程。

这一循环反应过程又称为柠檬酸循环或Krebs循环。

  三羧酸循环由八步反应构成:

草酰乙酸+乙酰CoA→柠檬酸→异柠檬酸→α-酮戊二酸→琥珀酰CoA→琥珀酸→延胡索酸→苹果酸→草酰乙酸。

  三羧酸循环的特点:

①循环反应在线粒体中进行,为不可逆反应。

②每完成一次循环,氧化分解掉一分子乙酰基,可生成12分子ATP。

③循环的中间产物既不能通过此循环反应生成,也不被此循环反应所消耗。

④循环中有两次脱羧反应,生成两分子CO2。

⑤循环中有四次脱氢反应,生成三分子NADH和一分子FADH2。

⑥循环中有一次直接产能反应,生成一分子GTP。

⑦三羧酸循环的关键酶是柠檬酸合酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶系,且α-酮戊二酸脱氢酶系的结构与丙酮酸脱氢酶系相似,辅助因子完全相同。

七、鞘磷脂的代谢:

  鞘脂类化合物中不含甘油,其脂质部分为鞘氨醇或N-脂酰鞘氨醇(神经酰胺)。

鞘氨醇可在全身各组织细胞的内质网合成,合成所需的原料主要是软脂酰CoA和丝氨酸,并需磷酸吡哆醛、NADPH及FAD等辅助因子参与。

体内含量最多的鞘磷脂是神经鞘磷脂,是构成生物膜的重要磷脂;合成时,在相应转移酶的催化下,将CDP-胆碱或CDP-乙醇胺携带的磷酸胆碱或磷酸乙醇胺转移至N-脂酰鞘氨醇上,生成神经鞘磷脂。

  八、胆固醇的代谢:

  胆固醇的基本结构为环戊烷多氢菲。

胆固醇的酯化在C3位羟基上进行,由两种不同的酶催化。

存在于血浆中的是卵磷脂胆固醇酰基转移酶(LCAT),而主要存在于组织细胞中的是脂肪酰CoA胆固醇酰基转移酶(ACAT)。

  1.胆固醇的合成:

胆固醇合成部位主要是在肝脏和小肠的胞液和微粒体。

其合成所需原料为乙酰CoA。

每合成一分子的胆固醇需18分子乙酰CoA,54分子ATP和10分子NADPH。

  ⑴乙酰CoA缩合生成甲羟戊酸(MVA):

此过程在胞液和微粒体进行。

2×乙酰CoA→乙酰乙酰CoA→HMG-CoA→MVA。

HMG-CoA还原酶是胆固醇合成的关键酶。

  ⑵甲羟戊酸缩合生成鲨烯:

此过程在胞液和微粒体进行。

MVA→二甲丙烯焦磷酸→焦磷酸法呢酯→鲨烯。

  ⑶鲨烯环化为胆固醇:

此过程在微粒体进行。

鲨烯结合在胞液的固醇载体蛋白(SCP)上,由微粒体酶进行催化,经一系列反应环化为27碳胆固醇。

  2.胆固醇合成的调节:

各种调节因素通过对胆固醇合成的关键酶——HMG-CoA还原酶活性的影响,来调节胆固醇合成的速度和合成量。

  ⑴膳食因素:

饥饿或禁食可抑制HMG-CoA还原酶的活性,从而使胆固醇的合成减少;反之,摄取高糖、高饱和脂肪膳食后,HMG-CoA活性增加而导致胆固醇合成增多。

  ⑵胆固醇及其衍生物:

胆固醇可反馈抑制HMG-CoA还原酶的活性。

胆固醇的某些氧化物,如7β-羟胆固醇,25-羟胆固醇等也可抑制该酶的活性。

  ⑶激素:

胰岛素和甲状腺激素可通过诱导该酶的合成而使酶活性增加;而胰高血糖素和糖皮质激素则可抑制该酶的活性。

  3.胆固醇的转化:

胆固醇主要通过转化作用,转变为其他化合物再进行代谢,或经粪便直接排出体外。

  ⑴转化为胆汁酸:

正常人每天合成的胆汁酸中有2/5通过转化为胆汁酸。

初级胆汁酸是以胆固醇为原料在肝脏中合成的,合成的关键酶是7α-羟化酶。

主要的初级胆汁酸是胆酸和鹅脱氧胆酸。

初级胆汁酸通常在其羧酸侧链上结合有一分子甘氨酸或牛磺酸,从而形成结合型初级胆汁酸,如甘氨胆酸,甘氨鹅脱氧胆酸、牛磺胆酸和牛磺鹅脱氧胆酸。

次级胆汁酸是在肠道细菌的作用下生成的。

主要的次级胆汁酸是脱氧胆酸和石胆酸。

  ⑵转化为类固醇激素:

肾上腺皮质球状带可合成醛固酮,又称盐皮质激素,可调节水盐代谢;肾上腺皮质束状带可合成皮质醇和皮质酮,合称为糖皮质激素,可调节糖代谢。

性激素主要有睾酮、孕酮和雌二醇。

  ⑶转化为维生素D3:

胆固醇经7位脱氢而转变为7-脱氢胆固醇,后者在紫外光的照射下,B环发生断裂,生成Vit-D3。

Vit-D3在肝脏羟化为25-(OH)D3,再在肾脏被羟化为1,25-(OH)2D3。

1,25-(OH)2D3为活性维生素D3。

  九、血浆脂蛋白:

  1.血浆脂蛋白的分类:

①电泳分类法:

根据电泳迁移率的不同进行分类,可分为四类:

乳糜微粒→β-脂蛋白→前β-脂蛋白→α-脂蛋白。

②超速离心法:

按脂蛋白密度高低进行分类,也分为四类:

CM→VLDL→LDL→HDL。

  2.载脂蛋白的功能:

  ⑴转运脂类物质;

  ⑵作为脂类代谢酶的调节剂:

LCAT可被ApoAⅠ等激活,也可被ApoAⅡ所抑制。

LpL(脂蛋白脂肪酶)可被ApoCⅡ所激活,也可被ApoCⅢ所抑制。

ApoAⅡ可激活HL的活性。

  ⑶作为脂蛋白受体的识别标记:

ApoB可被细胞膜上的ApoB,E受体(LDL受体)所识别;ApoE可被细胞膜上的ApoB,E受体和ApoE受体(LDL受体相关蛋白,LRP)所识别。

ApoAⅠ参与HDL受体的识别。

  ⑷参与脂质转运:

CETP可促进胆固醇酯由HDL转移至VLDL和LDL;PTP可促进磷脂由CM和VLDL转移至HDL。

  3.血浆脂蛋白的代谢和功能:

乳糜微粒在小肠粘膜细胞组装,与外源性甘油三酯的转运有关;极低密度脂蛋白在肝脏组装,与内源性甘油三酯的转运有关;低密度脂蛋白由VLDL代谢产生,可将肝脏合成的胆固醇转运至肝外组织细胞;高密度脂蛋白来源广泛,与胆固醇的逆向转运有关。

  第七章生物氧化

  一、生物氧化的概念和特点:

  物质在生物体内氧化分解并释放出能量的过程称为生物氧化。

与体外燃烧一样,生物氧化也是一个消耗O2,生成CO2和H2O,并释放出大量能量的过程。

但与体外燃烧不同的是,生物氧化过程是在37℃,近于中性的含水环境中,由酶催化进行的;反应逐步释放出能量,相当一部分能量以高能磷酸酯键的形式储存起来。

  二、线粒体氧化呼吸链:

  在线粒体中,由若干递氢体或递电子体按一定顺序排列组成的,与细胞呼吸过程有关的链式反应体系称为呼吸链。

这些递氢体或递电子体往往以复合体的形式存在于线粒体内膜上。

主要的复合体有:

  1.复合体Ⅰ(NADH-泛醌还原酶):

由一分子NADH还原酶(FMN),两分子铁硫蛋白(Fe-S)和一分子CoQ组成,其作用是将(NADH+H+)传递给CoQ。

  铁硫蛋白分子中含有非血红素铁和对酸不稳定的硫。

其分子中的铁离子与硫原子构成一种特殊的正四面体

  结构,称为铁硫中心或铁硫簇,铁硫蛋白是单电子传递体。

泛醌(CoQ)是存在于线粒体内膜上的一种脂溶性醌类化合物。

分子中含对苯醌结构,可接受二个氢原子而转变成对苯二酚结构,是一种双递氢体。

  2.复合体Ⅱ(琥珀酸-泛醌还原酶):

由一分子琥珀酸脱氢酶(FAD),两分子铁硫蛋白和两分子Cytb560组成,其作用是将FADH2传递给CoQ。

  细胞色素类:

这是一类以铁卟啉为辅基的蛋白质,为单电子传递体。

细胞色素可存在于线粒体内膜,也可存在于微粒体。

存在于线粒体内膜的细胞色素有Cytaa3,Cytb(b560,b562,b566),Cytc,Cytc1;而存在于微粒体的细胞色素有CytP450和Cytb5。

  3.复合体Ⅲ(泛醌-细胞色素c还原酶):

由两分子Cytb(分别为Cytb562和Cytb566),一分子Cytc1和一分子铁硫蛋白组成,其作用是将电子由泛醌传递给Cytc。

  4.复合体Ⅳ(细胞色素c氧化酶):

由一分子Cyta和一分子Cyta3组成,含两个铜离子,可直接将电子传递给氧,故Cytaa3又称为细胞色素c氧化酶,其作用是将电子由Cytc传递给氧。

五、嘧啶核苷酸的分解代谢:

  嘧啶核苷酸可首先在核苷酸酶和核苷磷酸化酶的催化下,除去磷酸和核糖,产生的嘧啶碱可在体内进一步分解代谢。

不同的嘧啶碱其分解代谢的产物不同,其降解过程主要在肝脏进行。

  胞嘧啶和尿嘧啶降解的终产物为(β-丙氨酸+NH3+CO2);胸腺嘧啶降解的终产物为(β-氨基异丁酸+NH3+CO2)。

  第十章DNA的生物合成

  一、遗传学的中心法则和反中心法则:

  DNA通过复制将遗传信息由亲代传递给子代;通过转录和翻译,将遗传信息传递给蛋白质分子,从而决定生物的表现型。

DNA的复制、转录和翻译过程就构成了遗传学的中心法则。

但在少数RNA病毒中,其遗传信息贮存在RNA中。

因此,在这些生物体中,遗传信息的流向是RNA通过复制,将遗传信息由亲代传递给子代;通过反转录将遗传信息传递给DNA,再由DNA通过转录和翻译传递给蛋白质,这种遗传信息的流向就称为反中心法则。

  二、DNA复制的特点:

  1.半保留复制:

DNA在复制时,以亲代DNA的每一股作模板,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为DNA的半保留复制(semiconservativereplication)。

DNA以半保留方式进行复制,是在1958年由M.Meselson和F.Stahl所完成的实验所证明。

  2.有一定的复制起始点:

DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸排列顺序的片段,即复制起始点(复制子)。

在原核生物中,复制起始点通常为一个,而在真核生物中则为多个。

  3.需要引物(primer):

DNA聚合酶必须以一段具有3'端自由羟基(3'-OH)的RNA作为引物,才能开始聚合子代DNA链。

RNA引物的大小,在原核生物中通常为50~100个核苷酸,而在真核生物中约为10个核苷酸。

  4.双向复制:

DNA复制时,以复制起始点为中心,向两个方向进行复制。

但在低等生物中,也可进行单向复制。

  5.半不连续复制:

由于DNA聚合酶只能以5'→3'方向聚合子代DNA链,因此两条亲代DNA链作为模板聚合子代DNA链时的方式是不同的。

以3'→5'方向的亲代DNA链作模板的子代链在聚合时基本上是连续进行的,这一条链被称为领头链(leadingstrand)。

而以5'→3'方向的亲代DNA链为模板的子代链在聚合时则是不连续的,这条链被称为随从链(laggingstrand)。

DNA在复制时,由随从链所形成的一些子代DNA短链称为冈崎片段(Okazakifragment)。

冈崎片段的大小,在原核生物中约为1000~2000个核苷酸,而在真核生物中约为100个核苷酸。

  三、DNA复制的条件:

  1.底物:

以四种脱氧核糖核酸(deoxynucleotidetriphosphate)为底物,即dATP,dGTP,dCTP,dTTP。

  2.模板(template):

以亲代DNA的两股链解开后,分别作为模板进行复制。

  3.引发体(primosome)和RNA引物(primer):

引发体由引发前体与引物酶(primase)组装而成。

引发前体是由若干蛋白因子聚合而成的复合体;引物酶本质上是一种依赖DNA的RNA聚合酶(DDRP)。

  4.DNA聚合酶(DNAdependentDNApolymerase,DDDP):

  ⑴种类和生理功能:

在原核生物中,目前发现的DNA聚合酶有三种,分别命名为DNA聚合酶Ⅰ(polⅠ),DNA聚合酶Ⅱ(polⅡ),DNA聚合酶Ⅲ(polⅢ),这三种酶都属于具有多种酶活性的多功能酶。

polⅠ为单一肽链的大分子蛋白质,具有5'→3'聚合酶活性、3'→5'外切酶活性和5'→3'外切酶的活性;其功能主要是去除引物、填补缺口以及修复损伤。

polⅡ具有5'→3'聚合酶活性和3'→5'外切酶活性,其功能不明。

polⅢ是由十种亚基组成的不对称二聚体,具有5'→3'聚合酶活性和3'→5'外切酶活性,与DNA复制功能有关。

  在真核生物中,目前发现的DNA聚合酶有五种。

其中,参与染色体DNA复制的是polα(延长随从链)和polδ(延长领头链),参与线粒体DNA复制的是polγ,polε与DNA损伤修复、校读和填补缺口有关,polβ只在其他聚合酶无活性时才发挥作用。

  ⑵DNA复制的保真性:

为了保证遗传的稳定,DNA的复制必须具有高保真性。

DNA复制时的保真性主要与下列因素有关:

①遵守严格的碱基配对规律;②在复制时对碱基的正确选择;③对复制过程中出现的错误及时进行校正。

  5.DNA连接酶(DNAligase):

DNA连接酶可催化两段DNA片段之间磷酸二酯键的形成,而使两段DNA连接起来。

该酶催化的条件是:

①需一段DNA片段具有3'-OH,而另一段DNA片段具有5'-Pi基;②未封闭的缺口位于双链DNA中,即其中有一条链是完整的;③需要消耗能量,在原核生物中由NAD+供能,在真核生物中由ATP供能。

  6.单链DNA结合蛋白(singlestrandbindingprotein,SSB):

又称螺旋反稳蛋白(HDP)。

这是一些能够与单链DNA结合的蛋白质因子。

其作用为:

①稳定单链DNA,便于以其为模板复制子代DNA;②保护单链DNA,避免核酸酶的降解。

  7.解螺旋酶(unwindingenzyme):

又称解链酶或rep蛋白,是用于解开DNA双链的酶蛋白,每解开一对碱基,需消耗两分子ATP。

  8.拓扑异构酶(topoisomerase):

拓扑异构酶可将DNA双链中的一条链或两条链切断,松开超螺旋后再将DNA链连接起来,从而避免出现链的缠绕。

  四、DN

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1