北邮电子院通信原理实验.docx

上传人:b****5 文档编号:6687665 上传时间:2023-01-09 格式:DOCX 页数:19 大小:454.23KB
下载 相关 举报
北邮电子院通信原理实验.docx_第1页
第1页 / 共19页
北邮电子院通信原理实验.docx_第2页
第2页 / 共19页
北邮电子院通信原理实验.docx_第3页
第3页 / 共19页
北邮电子院通信原理实验.docx_第4页
第4页 / 共19页
北邮电子院通信原理实验.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

北邮电子院通信原理实验.docx

《北邮电子院通信原理实验.docx》由会员分享,可在线阅读,更多相关《北邮电子院通信原理实验.docx(19页珍藏版)》请在冰豆网上搜索。

北邮电子院通信原理实验.docx

北邮电子院通信原理实验

目录

实验二抑制载波双边带的产生(DSBSCgeneration)3

一.实验目的3

二.实验步骤3

三.实验结果3

四.实验结果分析4

五.思考题5

实验三振幅调制5

一.实验目的5

二.实验步骤5

三.实验结果7

四.实验结果分析9

五.思考题10

实验四包络与包络再生(Envelopsandenvelopsrecovery)10

一.实验目的10

二.实验步骤10

三.实验结果11

四.实验结果分析13

五.思考题13

实验十八ASK调制与解调14

一.实验目的14

二.实验步骤14

三.实验结果分析19

实验十一取样与重建19

一.实验目的19

二.实验步骤19

三.实验结果20

四.思考题22

实验总结22

实验二抑制载波双边带的产生(DSBSCgeneration)

一.实验目的

1.了解抑制载波双边带(SC-DSB)调制器的基本原理;

2.测试SC-DSB调制器的特性。

二.实验步骤

1.将TIMS系统中的音频振荡器(AudioOscillator)、主振荡器(MasterSignals)、缓冲放大器(BufferAmplifiers)和乘法器(Multiplier)按图

(1)连接。

(1)抑制载波的双边带产生方法一

2.用频率计来调整音频振荡器,使其输出为1kHz,作为调制信号,并调整缓冲放大器的K1,使其输出到乘法器的电压振幅为1V;

3.调整缓冲放大器的K2,使主振荡器输至乘法器的电压为1V,作为载波信号;

4.测量乘法器的输出电压,并绘制其波形;

5.调整音频振荡器的输出,重复步骤4。

三.实验结果

1.音频振荡器输出1KHz正弦信号作为调制信号。

已调信号波形图:

2.音频振荡器输出频率正弦信号作为调制信号。

已调信号波形图:

四.实验结果分析

1.由实验可知,包络的波形为载波信号波形,其幅度为1V,而此题中的乘法器的kxy中的k值为0.5,所以SC-DSB信号为载波信号与调制信号相乘所得,乘法器的输出为乘积的一半,故波形图中调制信号幅度仅为500mV,而不是1V。

2.调制后的输出波形是以调制信号为包络,载波在包络里振荡,且当调制信号频率不一样时,调制后信号的波形差别很大。

并且不能使用包络检波法来解调SC-DSB信号,而是需要在接收端将信号与一个同频同相的载波信号相乘,再通过低通滤波器,得到调制信号的波形。

五.思考题

1.如何能使示波器上能清楚地观察到载波信号的变化?

答:

可以通过观察输出信号的频谱来观察载波的变化,另一方面,调制信号和载波信号的频率要相差大一下,已通过调整音频振荡器来完成。

2.用频率计直接读SC-DSB信号,将会读出什么值?

答:

频率计测得的是围绕一个中心频率来回摆动的值。

实验三振幅调制

一.实验目的

1.了解振幅调制器的基本工作原理;

2.了解振幅波调制系数的意义和求法。

二.实验步骤

1.将Tims系统中的音频振荡器,可变直流电压,主振荡器,加法器和乘法器按图(3)连接;

图(3)振幅调制的产生方法一

2.音频振荡器输出为1kHz,主振荡器输出为100kHz,将乘法输入耦合开关置DC状态;

3.将可变直流器调节旋钮逆时针调至最小,此时输出为-2.5V,加法器输出为+2.5V;

4.分别调整加法器增益G和g,使加法器交流振幅输出为1V,DC输出也为1V;

5.用示波器观察乘法器的输出,读出振幅的最大值和最小值,算出调制系数;

6.分别调整AC振幅和DC振幅,重复步骤5,观察超调的波形;

7.用图(4)的方法,产生一般调幅波;

8.将移相器置“HI”;

9.先不加加法器B输入端的信号,调整缓冲放大器的增益和加法器的G增益。

使加法器输出为振幅1V的SC-DSB信号;

10.移去加法器A输入端的信号,将B输入端信号加入,调整加法器的g增益,使加法器输出为振幅1V的正弦值;

11.将A端信号加入,调整移相器的相移,是加法器输出为调幅波,观察其波形,计算调制系数。

图(4)振幅调制的产生方法二

三.实验结果

1.加法器交流振幅输出为1V,直流输出为1V,即调制系数为1时的调制信号波形:

2.超调信号波形:

3.步骤9,加法器输出为振幅1V的SC-DSB信号:

4.步骤10,加法器输出为振幅1V的正弦值:

5.加法器输出为调幅波:

四.实验结果分析

幅度调制是最简单的调制方法,其解调也是相当简单。

可直接用包络检波。

当带有大载波信号超调的时候,调制出来的信号被解调后会产生很严重的失真,进行幅度调制时,调制系数应该小于1,否则不能正常解调出信号。

正常调制情况下,已调信号的包络是调制信号,接收端的包络检波器可以从中解调出信号。

当|m(t)|>a时,已调信号的包络不再是调制信号,信号波形失真,包络检波器无法从中解调出正确信号。

五.思考题

1.当调制系数大于1时,调制系数,此公式是否合适?

答:

不合适,因为此时为过度调制,幅度最小值不是实际最小值,实际最小值应为负值。

2.用图五产生一般调幅波,为何载波分量要和SC-DSB信号相同。

若两个相位差为90度时,会产生什么图形?

答:

因为最后的一般调幅信号为:

,其中由两部分组成,为了使这两部分最后能够合并,就要求载波分量要和SC-DSB信号相同。

若两个相位差90°,则

,这是一个振幅不断变化的调频波。

实验四包络与包络再生(Envelopsandenvelopsrecovery)

一.实验目的

1.了解包络检波器的基本结构和原理。

二.实验步骤

1.利用实验三的方法组成一个调制系数为100%的一般调幅波;

2.将共享模块(UtilitiesModule)中的整流器(Rectifier)和音频放大器(HeadphoneAmplifier)中的3KHz低通滤波器按下图(5)方式连接;

3.用示波器观察调制系数为0.5和1.5的输出波形;

4.将调幅波到公用模块(UtilitiesModule)中的“DIODE+LPF”的输入端,用示波器观察其输出的波形。

图(5)包络检波器原理

三.实验结果

1.调制系数为0.5的调幅波(加法器之流振幅输出为1V,交流振幅输出为0.5V)。

1)调制信号波形为:

2)TUNEABLELPF模块还原出的调制信号波形:

2.调制系数为1.5的调幅波(加法器之流振幅输出为1V,交流振幅输出为1.5V)。

1)调制信号波形为:

2)TUNEABLELPF模块还原出的调制信号波形:

四.实验结果分析

由实验可知,当调制系数小于1时,调幅波能用包络检波器进行解调。

当调制系数大于1时,包络不能反映原波形,调幅波不能用包络检波器进行解调。

五.思考题

1.是否可用包络检波器来解调“SC-DSB”信号?

请解释原因。

答:

不可以,因为SC-DSB信号波形的包络并不代表调制信号,在与t轴的交点处有相位翻转。

2.比较同步检波和包络检波的优缺点。

答:

包络检波的优点是:

简单、经济;缺点是:

总的发射功率中的大部分功率被分配给了载波分量,其调制效率相当低。

同步检波的优点是:

精确、效率高;缺点是:

复杂、设备较贵;

3.若调制系数大于1,是否可以用包络检波来还原信号?

答:

不可以,若调制系数大于1时,1+m(t)不是一直为正,解调出来的包络不是原信号。

实验十八ASK调制与解调

一.实验目的

了解幅度键控(Amplitude-shiftKeyingASK)调制与解调的基本组成和原理。

二.实验步骤

图(6)用开关产生ASK调制信号

1.将Tims系统中主振荡器(MasterSignals)、音频振荡器(AudioOscillator)、序列码产生器(SequenceGenerator)和双模拟开关(DualAnalogSwitch),按图(6)的方式连接;

2.将主振荡器模块2kHz正弦信号加至序列码产生器的CLK输入端并将其输出的TTLX加至又模拟开关control1,作为数字信号序列;

3.将主振荡器模块8.33kHz输出加至音频振荡模块的同步信号输入端(SYNC),并将其输出接到双模拟开关模块的IN1;

4.用示波器观察ASK信号。

a)用开关产生ASK调制信号,如图:

5.将ASK调制信号加到由下图组成的ASK非同步解调器的输入端。

图(7)Ask非同步解调

6.将音频振荡器的输出信号调为4kHz,并将ASK信号加至共享模块中整流器(Rectifier)的输入端。

7.整流器的输出加到可调低通滤波模块的输入端,从低通滤波的输出端可以得到ASK解调信号。

8.将可调直流电压加到共享模块的比较器,决定比较电平,比较器输出为原数字信号。

b)ASK非同步解调:

选择最佳比较电平VT时,解调出完美波形:

如图:

9.用Tims系统中的模块组成,由下图所示的用乘法器组成的ASK调制电路。

10.主振荡器2kHz正弦信号输入到序列码产生模块“CLK”输入端,产生数字信号,再将其X输出端加以加法器A端。

11.将A端信号拿开,在加法器B端加直流电压,并调整加法器增益调整钮“g”,使加法器输出直流为1V。

12.将加法器“A”端输入信号加上,并把加法器的输出加到乘法器X端。

13.用示波器观察加法器输出信号,如图:

14.用Tims系统的模块组成如下图所示的ASK同步解调电路。

图(8)ASK同步解调

15.将主振荡器的100kHz正弦波作为同步检波的参考电压加入移相器的输入,移相器的输出加至乘法器的Y输入端(切换开关至AC)。

16.将上述实验中产生ASK信号加到乘法器X输入端。

17.乘法器的输出加至可调低通滤波器。

18.再通过共享模块中比较器加以整形,形成数字信号。

19.在比较器输入端加一个可调的直流电压,作为比较电平。

20.调整移相器的相移,可调低通滤波器的带宽和直流电平,使ASK解调信号最大,并用示波器观察。

三.实验结果分析

1.从调制信号图可以看出,ASK信号是以单极性不归零码序列来控制正弦载波的开启和关闭的。

2.由于ASK的抗噪声性能不如其他调制方式,所以该调制方式在目前的卫星通信、数字微波通信中没被采用,但是由于其调制方式的实现简单,在光纤通信系统中,振幅键控方式却获得广泛应用。

3.总结:

ASK信号的原理实际就是以单极性不归零码序列来控制正弦载波的开启与关闭.其非同步解调就是包络解调,在相同的信噪比情况下,包络检波的误比特率比同步检波大。

实验十一取样与重建

一.实验目的

了解取样定理的原理,取样后的信号如何恢复原信号,取样时钟应该如何选取。

二.实验步骤

1.将Tims系统中,主振荡器(MasterSignal)、音频振荡器(AudioOscillators)、双脉冲产生器(TwinPulseGenerator)、双模拟开关(DualAnalogSwitch)和音频放大器(HeadphoneAmplifier)按图(9)连接:

图(9)取样信号连接图

2.将主振荡器中的8.3kHz取样信号的输出接到双脉冲产生器的CLK端。

3.将双脉冲产生器的Q1的输出端接至双模拟开关的控制1(Control1)的输入端。

4.将主振荡器的Message的输出端的信号(2kHz)接到双模拟开关的ln1输入端。

5.用示波器观察双模拟开关的输出信号。

6.将双模拟开关的输出信号接至音频放大器的输入端。

用示波器进行观察。

若输出信号太小可调整音频放大器放大量。

7.用VCO的模拟输出替代主振荡器的取样信号。

接到双脉冲产生器的输入,使VCO在3kHZ-6Khz只见进行变化,观察音频放大器的输出,并与主振荡器的Message输出端信号进行比较,得出信号不失真所需的最小取样频率。

三.实验结果

1.双模拟开关的输出信号:

2.最低采样率重建波形:

四.思考题

1.为什么要从取样信号中恢复原信号,需要低通滤波器画出取样信后的频谱?

答:

因为其为调频波,其频谱的变化规律反映了调制信号。

2.为什么取样脉冲的频率要大于两倍信号频率,而不是等于。

答:

因为取样脉冲的频率要等于两倍信号频率时,其频谱是连续的,不容易用滤波器恰好滤出原信号。

实验总结

通原实验虽然只有两次课,课上的任务也是比较简单的,只是对照实验书上的仪器连接图,用实验室提供的接口线在实验箱上完成搭建即可,但是每个实验还是有其特殊的价值,我也在实验过程中受益匪浅。

每个实验都是先搭建,再观察记录示波器波形输出,通过输出图形对比自己知道的理论图形来加深对课本知识的了解。

我们在搭建实验箱的过程中也会详细的琢磨实验书上的连接图,在理解实验原理的基础上再去完成实验内容,这样不仅使我们实验进行的很快,效率明显,一次性实验搭建的正确率很高,而且还能举一反三,达到与实验目的殊途同归的效果。

我想这样的实验方法才能真正的学到很多东西,才可能真正达到学校安排本次实验的目的!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1