总结初中数理化一句话概括一个知识点.docx
《总结初中数理化一句话概括一个知识点.docx》由会员分享,可在线阅读,更多相关《总结初中数理化一句话概括一个知识点.docx(115页珍藏版)》请在冰豆网上搜索。
总结初中数理化一句话概括一个知识点
初中数学知识点大全
1、一元一次方程根的情况
△=b2-4ac
当△>0时,一元二次方程有2个不相等的实数根;
当△=0时,一元二次方程有2个相同的实数根;
当△<0时,一元二次方程没有实数根
2、平行四边形的性质:
1两组对边分别平行的四边形叫做平行四边形。
2平行四边形不相邻的两个顶点连成的线段叫他的对角线。
3平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:
①一组邻边相等的平行四边形是菱形
②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:
定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:
1有一个内角是直角的平行四边形叫做矩形。
2矩形的对角线相等,四个角都是直角。
3对角线相等的平行四边形是矩形。
4正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:
①N边形的内角和等于(N-2)180度
②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)
平均数:
对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X
加权平均数:
一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理三角形两边的和大于第三边
16、推论三角形两边的差小于第三边
17、三角形内角和定理三角形三个内角的和等于180°
18、推论1直角三角形的两个锐角互余
19、推论2三角形的一个外角等于和它不相邻的两个内角的和
20、推论3三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS)有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1在角的平分线上的点到这个角的两边的距离相等
28、定理2到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1三个角都相等的三角形是等边三角形
36、推论2有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1关于某条直线对称的两个图形是全等形
43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理n边形的内角的和等于(n-2)×180°
51、推论任意多边的外角和等于360°
52、平行四边形性质定理1平行四边形的对角相等
53、平行四边形性质定理2平行四边形的对边相等
54、推论夹在两条平行线间的平行线段相等
55、平行四边形性质定理3平行四边形的对角线互相平分
56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形
58、平行四边形判定定理3对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形
60、矩形性质定理1矩形的四个角都是直角
61、矩形性质定理2矩形的对角线相等
62、矩形判定定理1有三个角是直角的四边形是矩形
63、矩形判定定理2对角线相等的平行四边形是矩形
64、菱形性质定理1菱形的四条边都相等
65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1四边都相等的四边形是菱形
68、菱形判定定理2对角线互相垂直的平行四边形是菱形
69、正方形性质定理1正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1关于中心对称的两个图形是全等的
72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h
83、
(1)比例的基本性质:
如果a:
b=c:
d,那么ad=bc
如果ad=bc,那么a:
b=c:
d
84、
(2)合比性质:
如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3三边对应成比例,两三角形相似(SSS)
95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2相似三角形周长的比等于相似比
98、性质定理3相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理不在同一直线上的三点确定一个圆。
110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交d﹤r
②直线L和⊙O相切d=r
③直线L和⊙O相离d﹥r
122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理圆的切线垂直于经过切点的半径
124、推论1经过圆心且垂直于切线的直线必经过切点
125、推论2经过切点且垂直于切线的直线必经过圆心
126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理弦切角等于它所夹的弧对的圆周角
129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离d﹥R+r
②两圆外切d=R+r
③两圆相交R-r﹤d﹤R+r(R﹥r)
④两圆内切d=R-r(R﹥r)
⑤两圆内含d﹤R-r(R﹥r)
136、定理相交两圆的连心线垂直平分两圆的公共弦
137、定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141、正n边形的面积Sn=pnrn/2p表示正n边形的周长
142、正三角形面积√3a/4a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:
L=n兀R/180
145、扇形面积公式:
S扇形=n兀R^2/360=LR/2
146、内公切线长=d-(R-r)外公切线长=d-(R+r)
三、常用数学公式
公式分类公式表达式
乘法与因式分解a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
一元二次方程的解-b+√(b2-4ac)/2a
-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/a
X1*X2=c/a注:
韦达定理
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R
注:
其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB
注:
角B是边a和边c的夹角
初中几何常见辅助线作法歌诀汇编
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
初中物理基本概念概要
一、测量
⒈长度L:
主单位:
米;测量工具:
刻度尺;测量时要估读到最小刻度的下一位;光年的单位是长度单位。
⒉时间t:
主单位:
秒;测量工具:
钟表;实验室中用停表。
1时=3600秒,1秒=1000毫秒。
⒊质量m:
物体中所含物质的多少叫质量。
主单位:
千克;测量工具:
秤;实验室用托盘天平。
二、机械运动
⒈机械运动:
物体位置发生变化的运动。
参照物:
判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。
⒉匀速直线运动:
①比较运动快慢的两种方法:
a比较在相等时间里通过的路程。
b比较通过相等路程所需的时间。
②公式:
1米/秒=3.6千米/时。
三、力
⒈力F:
力是物体对物体的作用。
物体间力的作用总是相互的。
力的单位:
牛顿(N)。
测量力的仪器:
测力器;实验室使用弹簧秤。
力的作用效果:
使物体发生形变或使物体的运动状态发生改变。
物体运动状态改变是指物体的速度大小或运动方向改变。
⒉力的三要素:
力的大小、方向、作用点叫做力的三要素。
力的图示,要作标度;力的示意图,不作标度。
⒊重力G:
由于地球吸引而使物体受到的力。
方向:
竖直向下。
重力和质量关系:
G=mgm=G/g
g=9.8牛/千克。
读法:
9.8牛每千克,表示质量为1千克物体所受重力为9.8牛。
重心:
重力的作用点叫做物体的重心。
规则物体的重心在物体的几何中心。
⒋二力平衡条件:
作用在同一物体;两力大小相等,方向相反;作用在一直线上。
物体在二力平衡下,可以静止,也可以作匀速直线运动。
物体的平衡状态是指物体处于静止或匀速直线运动状态。
处于平衡状态的物体所受外力的合力为零。
⒌同一直线二力合成:
方向相同:
合力F=F1+F2;合力方向与F1、F2方向相同;
方向相反:
合力F=F1-F2,合力方向与大的力方向相同。
⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。
滑动摩擦力与正压力,接触面材料性质和粗糙程度有关。
【滑动摩擦、滚动摩擦、静摩擦】
7.牛顿第一定律也称为惯性定律其内容是:
一切物体在不受外力作用时,总保持静止或匀速直线运动状态。
惯性:
物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。
四、密度
⒈密度ρ:
某种物质单位体积的质量,密度是物质的一种特性。
公式:
m=ρV国际单位:
千克/米3,常用单位:
克/厘米3,
关系:
1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3;
读法:
103千克每立方米,表示1立方米水的质量为103千克。
⒉密度测定:
用托盘天平测质量,量筒测固体或液体的体积。
面积单位换算:
1厘米2=1×10-4米2,
1毫米2=1×10-6米2。
五、压强
⒈压强P:
物体单位面积上受到的压力叫做压强。
压力F:
垂直作用在物体表面上的力,单位:
牛(N)。
压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关。
压强单位:
牛/米2;专门名称:
帕斯卡(Pa)
公式:
F=PS【S:
受力面积,两物体接触的公共部分;单位:
米2。
】
改变压强大小方法:
①减小压力或增大受力面积,可以减小压强;②增大压力或减小受力面积,可以增大压强。
⒉液体内部压强:
【测量液体内部压强:
使用液体压强计(U型管压强计)。
】
产生原因:
由于液体有重力,对容器底产生压强;由于液体流动性,对器壁产生压强。
规律:
①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大。
[深度h,液面到液体某点的竖直高度。
]
公式:
P=ρghh:
单位:
米;ρ:
千克/米3;g=9.8牛/千克。
⒊大气压强:
大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半球实验,测定大气压强数值的是托里拆利(意大利科学家)。
托里拆利管倾斜后,水银柱高度不变,长度变长。
1个标准大气压=76厘米水银柱高=1.01×105帕=10.336米水柱高
测定大气压的仪器:
气压计(水银气压计、盒式气压计)。
大气压强随高度变化规律:
海拔越高,气压越小,即随高度增加而减小,沸点也降低。
六、浮力
1.浮力及产生原因:
浸在液体(或气体)中的物体受到液体(或气体)对它向上托的力叫浮力。
方向:
竖直向上;原因:
液体对物体的上、下压力差。
2.阿基米德原理:
浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。
即F浮=G液排=ρ液gV排。
(V排表示物体排开液体的体积)
3.浮力计算公式:
F浮=G-T=ρ液gV排=F上、下压力差
4.当物体漂浮时:
F浮=G物且ρ物<ρ液当物体悬浮时:
F浮=G物且ρ物=ρ液
当物体上浮时:
F浮>G物且ρ物<ρ液当物体下沉时:
F浮ρ液
七、简单机械
⒈杠杆平衡条件:
F1l1=F2l2。
力臂:
从支点到力的作用线的垂直距离
通过调节杠杆两端螺母使杠杆处于水位置的目的:
便于直接测定动力臂和阻力臂的长度。
定滑轮:
相当于等臂杠杆,不能省力,但能改变用力的方向。
动滑轮:
相当于动力臂是阻力臂2倍的杠杆,能省一半力,但不能改变用力方向。
⒉功:
两个必要因素:
①作用在物体上的力;②物体在力方向上通过距离。
W=FS功的单位:
焦耳
3.功率:
物体在单位时间里所做的功。
表示物体做功的快慢的物理量,即功率大的物体做功快。
W=PtP的单位:
瓦特;W的单位:
焦耳;t的单位:
秒。
八、光
⒈光的直线传播:
光在同一种均匀介质中是沿直线传播的。
小孔成像、影子、光斑是光的直线传播现象。
光在真空中的速度最大为3×108米/秒=3×105千米/秒
⒉光的反射定律:
一面二侧三等大。
【入射光线和法线间的夹角是入射角。
反射光线和法线间夹角是反射角。
】
平面镜成像特点:
虚像,等大,等距离,与镜面对称。
物体在水中倒影是虚像属光的反射现象。
⒊光的折射现象和规律:
看到水中筷子、鱼的虚像是光的折射现象。
凸透镜对光有会聚光线作用,凹透镜对光有发散光线作用。
光的折射定律:
一面二侧三随大四空大。
⒋凸透镜成像规律:
[U=f时不成像U=2f时V=2f成倒立等大的实像]
物距u像距v像的性质光路图应用
u>2fff2f倒放大实幻灯机
u⒌凸透镜成像实验:
将蜡烛、凸透镜、光屏依次放在光具座上,使烛焰中心、凸透镜中心、光屏中心在同一个高度上。
九、热学:
⒈温度t:
表示物体的冷热程度。
【是一个状态量。
】
常用温度计原理:
根据液体热胀冷缩性质。
温度计与体温计的不同点:
①量程,②最小刻度,③玻璃泡、弯曲细管,④使用方法。
⒉热传递条件:
有温度差。
热量:
在热传递过程中,物体吸收或放出热的多少。
【是过程量】
热传递的方式:
传导(热沿着物体传递)、对流(靠液体或气体的流动实现热传递)和辐射(高温物体直接向外发射出热)三种。
⒊汽化:
物质从液态变成气态的现象。
方式:
蒸发和沸腾,汽化要吸热。
影响蒸发快慢因素:
①液体温度,②液体表面积,③液体表面空气流动。
蒸发有致冷作用。
⒋比热容C:
单位质量的某种物质,温度升高1℃时吸收的热量,叫做这种物质的比热容。
比热容是物质的特性之一,单位:
焦/(千克℃)常见物质中水的比热容最大。
C水=4.2×103焦/(千克℃)读法:
4.2×103焦耳每千克摄氏度。
物理含义:
表示质量为1千克水温度升高1℃吸收热量为4.2×103焦。
⒌热量计算:
Q放=cm⊿t降Q吸=cm⊿t升
Q与c、m、⊿t成正比,c、m、⊿t之间成反比。
⊿t=Q/cm
6.内能:
物体内所有分子的动能和分子势能的总和。
一切物体都有内能。
内能单位