核反映堆物理温习重点.docx

上传人:b****5 文档编号:6603572 上传时间:2023-01-08 格式:DOCX 页数:20 大小:872.14KB
下载 相关 举报
核反映堆物理温习重点.docx_第1页
第1页 / 共20页
核反映堆物理温习重点.docx_第2页
第2页 / 共20页
核反映堆物理温习重点.docx_第3页
第3页 / 共20页
核反映堆物理温习重点.docx_第4页
第4页 / 共20页
核反映堆物理温习重点.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

核反映堆物理温习重点.docx

《核反映堆物理温习重点.docx》由会员分享,可在线阅读,更多相关《核反映堆物理温习重点.docx(20页珍藏版)》请在冰豆网上搜索。

核反映堆物理温习重点.docx

核反映堆物理温习重点

第一章核反映堆的核物理基础(6学时)

1.什么是核能?

包括哪两种类型?

核能的优势和缺点是什么?

核能:

原子核结构发生转变时释放出的能量,要紧包括裂变能和聚变能。

优势:

1)污染小:

2)需要燃料少;3)重量轻、体积小、不需要空气,装一炉料可运行很长时刻。

缺点:

1)次锕系核素具有几百万年的半衰期,且具有毒性,需要妥帖保留;2)裂变产物带有强的放射性,但在300年之内能够衰变到和天然易裂变核素处于同一放射性水平上;3)需要考虑排除剩余发烧。

2.核反映堆的概念。

核反映堆可按哪些进行分类,可划分为哪些类型?

属于哪一种类型的核反映堆?

核反映堆:

一种能以可控方式产生自持链式裂变反映的装置。

核反映堆分类:

分类的着眼点

名称和特征

A.用途

A1动力堆:

发电,供热,作为推进动力

A2生产堆:

生产钚-239或氚

A3研究试验堆

A4特殊用途堆

3.原子核大体性质。

核素:

具有确信质子数Z和核子数A的原子核。

同位素:

质子数Z相同而中子数N不同的核素。

同量素:

质量数A相同,而质子数Z和中子数N各不相同的核素。

同中子数:

只有中子数N相同的核素。

原子核能级:

最低能量状态叫做基态,比基态高的能量状态称激发态。

激发态是不稳固的,会自发跃迁到基态,并以放出射线的形式释放出多余的能量。

缘故:

相关于中等核来讲,轻核和重核的比结合能较小;从比结合能概念,通过把结合能比较小的核素变成结合能比较大的中等核,就能够放出一些能量,这正是目前通过重核裂变成中等核或轻核聚变成中等核等方式来利用原子核能的思路。

4.中子与核发生彼此作用。

中子与核发生彼此作用进程:

势散射、直接彼此作用、复合核的形成

中子与核彼此作用最终结果分两大类:

散射:

弹性散射和非弹性散射;吸收:

包括(n,f);(n,γ);(n,α);(n,p)等

核反映式表达形式:

要紧反映类型:

弹性散射:

靶核内能不变即基态,经典力学适用(动量和动能都守恒),热中子反映堆内起要紧作用,(n,n)

非弹性散射:

靶核内能发生转变(动量守恒,动能不守恒),处在激发态上,并返回基态,放出射线,阈能特点,(n,n’)

辐射俘获(包括共振吸收):

复合核退激进程

238U+n→239U→→239Pu;232Th+n→233Th→→233U;(n,γ)

放出带电粒子的反映:

10B+n→7Li+4He;16O+n→16N+1H;(n,α),(n,p)

放出n个中子的反映:

(n,2n),(n,3n)

裂变反映:

235U+n→236U*→A1X+A2X+vn;(n,f)

5.核截面和核反映率。

包括:

微观截面、宏观截面、平均自由程、核反映率和中子通量密度的概念并明白得;把握核反映截面随中子能量的转变规律。

微观截面:

σ,表示平均一个入射中子与一个靶核发生彼此作用的概率大小的一种气宇。

单位一样为barn(靶),10-28m2。

宏观截面:

;即核密度与该核的微观截面的乘积。

单位m-1。

适应用cm-1。

物理意义1:

表征一个中子与单位体积内(1m3)内的原子核发生核反映的平均概率大小的一种气宇。

物理意义2:

一个中子穿行单位距离与核发生反映的概率大小的一种气宇。

平均自由程:

咱们把宏观截面的倒数概念为平均自由程,记为λ。

物理意义:

平均自由程表示的是中子在介质中运动时,平均要走多长路程才与介质的原子核发生一次彼此作用。

截面随中子能量的转变规律:

1)低能区(E<1eV),吸收截面随中子能量减小而增大,大致与中子的速度成反比,亦称吸收截面的1/v区。

2)中能区(1eV

3)快中子区(E>10keV),截面一样都很小,通常小于10靶,而且截面随能量转变也趋于滑腻。

核反映率:

单位时刻内在单位体积内发生核反映的次数。

其中,中子通量密度φ:

单位体积中(1m3)所有中子在单位时刻(1s)内飞行的总路程。

6.核反映的共振现象。

包括:

共振类型、特点和共振峰的典型参数;多普勒效应的概念;共振的性质;

共振类型:

俘获共振、散射共振、裂变共振

特点:

重核在低能区和中能区就存在;前段可分辨,后段慢慢难分辨

共振峰的典型参数:

共振能,峰值截面和能级宽度

多普勒效应:

因靶核的热运动,本来具有单一能量的中子,从它与核的彼此作用看,与靶核的相对能量有一个范围展开,使共振峰展开而共振峰的峰值下降,称为多普勒效应。

共振的性质:

靶核的温度上升,①共振峰进一步加宽和②降低峰值,称为多普勒展宽。

③积分值不变,即不随温度T转变而转变。

7.核裂变反映。

包括:

明白得易裂变核和可裂变核;明白得裂变截面(微观截面和宏观截面)与哪些因素有关。

微观裂变截面与哪些因素有关?

把握核反映堆内的要紧放射性来源、瞬发中子缓和发中子、有效裂变中子数,裂变中子的能量散布规律及平均能量,裂变能量种类及可回收情形,反映堆功率和核裂变反映率的关系,停堆后的衰变热规律等。

易裂变核:

吸收动能为零的中子后就能够够裂变的核。

可裂变核:

入射中子必需具有必然动能才能使之裂变的核,如

宏观截面大小阻碍因素:

入射中子能量,靶核类别,靶核温度,靶核密度。

微观截面大小阻碍因素:

入射中子能量,靶核类别,靶核温度。

堆内的要紧放射性来源:

裂变产物的放射性衰变。

瞬发中子缓和发中子:

有效裂变中子数:

表征燃料核每吸收一个中子后平均放出的中子数,称为有效裂变中子数,用η表示。

裂变中子的能量散布规律:

瞬发裂变谱:

瞬发中子的平均能量约为2MeV

裂变能量种类及可回收情形:

反映堆功率和核裂变反映率的关系:

反映堆热功率:

=R

V。

其中,R为核裂变反映率。

停堆后衰变热功率:

1)部份裂变产物释放的缓发中子引发的核裂变产生的能量,只在停堆后几分钟内到几十分钟起作用。

2)裂变产物和中子俘获物进行放射性衰变,释放出能量,是反映堆剩余功率的要紧来源。

第二章中子慢化和扩散(5学时)

1)自持链式裂变反映的概念。

从自持角度分析反映堆在哪些情形下别离属于哪几种状态?

自持链式裂变反映:

反映堆系统内发生的裂变反映在不依托外界补充中子的情形下,能持续一代一代地进展下去,如此的链式反映叫做自持链式裂变反映。

三种链式反映:

2)中子循环的概念。

中子消失的途径和位置。

中子循环:

确实是指裂变中子通过慢化成为热中子,热中子击中燃料核引发裂变又放出裂变中子这一不断循环的进程。

中子消失的途径和位置:

3)在热中子反映堆中,中子的增减和平稳要紧有哪些进程。

增加进程:

1)U-238的快中子增殖

2)U-235的热中子裂变

减少进程:

1)慢化剂和结构材料等物质的辐射俘获。

2)慢化进程中的共振吸收。

3)中子的泄漏。

包括:

慢化进程中的泄漏。

热中子扩散进程中的泄漏。

4)六个因子的概念。

四因子和六因子公式。

快中子倍增系数ε:

由一个初始裂变中子所取得的,慢化到U-238裂变阈能以下的平均中子数。

逃脱共振概率P:

慢化进程中逃脱共振吸收的中子所占的份额。

快中子不泄漏概率Pf:

快中子没有泄漏出堆芯的概率。

热中子不泄漏概率PT:

热中子在扩散进程中没有泄漏出堆芯的概率。

热中子利用系数f:

(燃料吸收的热中子数)/(被吸收的全数热中子数,包括被燃料,慢化剂,冷却剂,结构材料等所有物质吸收的热衷子数)

有效裂变中子数η:

燃料每吸收一个热中子所产生的平均裂变中子数。

四因子公式:

=εPfη

六因子公式:

K=εPfηPFPT

5)慢化进程的概念。

包括哪两种散射,特点是什么?

堆内要紧的散射是哪一种?

慢化进程:

中子由于散射(包括弹性和非弹性)碰撞而降低速度的进程叫做慢化进程。

弹性散射特点:

此进程中,系统动能和动量均守恒。

碰撞后中子因把自己一部份动能传递给介质核而减速,运动方向也发生转变。

非弹性散射:

该反映是阈能反映。

进程中动能不守恒,动量守恒。

为几千伏以上能量的中子与质量数较大的铀,铁等介质核彼此作用而慢化的要紧机理。

堆内要紧的慢化进程是弹性散射。

6)明白得弹性散射后的能量转变情形和规律。

7)对数能降、对数能降增量和平均对数能降增量的概念。

对数能降:

中子在慢化进程中能量的减少能够用一个无量纲量u来表示,它的概念为,u=㏑(E0/E);其中E0是由裂变产生的中子的平均能量,一样取2MeV。

E为慢化后的中子能量。

对数能降增量:

u2-u1=㏑(E0/E2)-㏑(E0/E1)=㏑(E1/E2)

平均对数能降增量:

在中子慢化的进程中,每次碰撞中子的自然对数减少的平均值叫做每次碰撞的平均对数能量减小,记做ξ。

8)试尝试计算裂变中子在与各类核的碰撞进程中,平均通过量少次碰撞成为热中子。

N=㏑(E0/E)/ξ;其中N为中子从初始能量慢化为热中子所需的平均碰撞次数;E0是由裂变产生的中子的平均能量,一样取2MeV;E是热中子的能量,一样取;ξ为要求的各类核素的平均对数能降增量。

关于氢核,N=18;石墨,114;铀-238,2172。

9)慢化能力和慢化比的概念。

试说明什么缘故压水堆电站一样采纳轻水为慢化剂和冷却剂。

慢化比:

任何一种核素,除散射中子,也会吸收中子。

若是其吸收截面过大,会引发堆内中子的过量损失而不适合作为慢化剂。

因此另外概念下面一个量称为慢化比:

10)无穷均匀介质内的中子慢化能谱符合什么规律,一样反映堆中中子能谱可由哪三部份组成?

无穷均匀介质内的中子慢化能谱在慢化区符合1/E散布。

一样反映堆中中子能谱:

1)热中子区:

Maxwell,麦克斯韦谱

2)慢化区:

1/E谱或费米谱

3)快中子区:

裂变谱

11)中子的平均寿命一样多大?

中子的平均寿命为慢化时刻和扩散时刻之和。

热堆:

要紧由扩散时刻确信,约为10-4s。

快堆:

主若是慢化时刻中的一部份,约为10-7S。

12)中子年龄、慢化长度、徙动长度、徙动面积、扩散长度的概念或物理意义是什么?

中子年龄τ:

无穷介质点源发出的中子从源点慢化至年龄等于U或E所穿行的直线距离均方值的六分之一。

注:

并非具有时刻的意义,它仅是一个空间上的意义。

慢化长度:

由于中子的费米年龄与慢化进程中所移动的均方距离有关,因此称费米年龄的平方根为慢化长度。

徙动长度M:

;M越大,中子不泄漏概率PL便越小。

徙动面积:

扩散面积(L2)与中子年龄(τ)之和,是中子由作为快(裂变)中子产生出来,直到它成为热中子并被吸收所穿行直线距离的均方值的六分之一(点源情形)。

;式中rs是快中子自源点慢化到热中子时所穿行的平均直线距离,rd是中子成为热中子点起到被吸收为止所穿行的平均直线距离。

扩散长度:

;物理意义能够明白得为热中子扩散长度的平方等于热中子从产生点(源点)到被吸收点的均方飞行距离的六分之一。

扩散近似:

假定反映堆内中子在介质核上的碰撞散射是杂乱无章且各向同性的(中子沿各个方向运动散射出来的中子数相等),知足分子扩散的斐克定律。

不同假设条件下有不同的方程,每项的物理意义。

单速中子扩散方程:

稳态下的单速中子扩散方程:

稳态意思是中子通量密度不随时刻转变。

即上式等号右边项为0。

斐克定律:

中子流密度J正比于负的中子通量密度梯度。

也可表示成

式中J为中子流密度:

单位时刻内穿过与流动方向垂直的单位表面面积的净中子数;矢量,单位:

n/cm2/s。

D为扩散常数,单位cm。

a.假设介质为弱吸收,散射各向同性。

b.考虑中子与介质散射各向异性后,近似修正为

非增殖介质的稳态中子扩散方程:

13)扩散方程求解的边界条件有哪些?

第三章核反映堆临界理论(5学时)

1)什么是均匀裸堆?

什么是单群?

均匀裸堆:

是指燃料和慢化剂等一切材料都是均匀混合的无反射层的反映堆。

单群:

是指以为反映堆中所有的中子都具有相同的能量,列为一群。

2)临界扩散方程和一般扩散方程的不同,无增殖介质和带增殖介质的扩散方程的不同。

临界扩散方程:

一般扩散方程:

不同:

临界扩散方程描述的是稳固状态,中子通量密度不随时刻转变。

无增殖介质和带增殖介质的扩散方程的不同:

带增殖介质的扩散方程有中子源项,而无增殖介质的扩散方程没有。

3)材料曲率和几何曲率的表达式。

这二者在什么情形下使得反映堆处于哪一种状态?

材料曲率:

几何曲率:

4)一维无穷平板、有限高圆柱形、长方体的均匀裸堆的几何曲率和中子通量密度散布表达式。

无穷平板:

尺寸,厚a;几何曲率

;

中子通量密度散布φ=Acos(πx/a)

长方体:

尺寸,a*b*c;几何曲率

中子通量密度散布φ=Acos(πx/a)cos(πy/b)cos(πz/c)

有限高圆柱形:

尺寸,半径R,高H;几何曲率

中子通量密度散布φ=AJ0(R)cos(πz/H)

5)充分明白得临界条件的表达式。

P87例题。

临界条件:

热中子不泄漏概率:

6)什么是反射层节省?

反射层的部份性质。

反射层的作用有哪些?

反射层节省δ:

当反映堆芯部周围有了反射层后,反映堆的临界体积(或尺寸)比裸堆的临界体积(或尺寸)减小了。

芯部临界尺寸的减少量就称之为反射层节省。

反射层的部份性质:

1)当反射层较薄时,反射层节省等于反射层厚度;

2)当反射层节省δ达到一个常数值(大约等于中子在反射层中的扩散长度)后,就再也不与反射层厚度有关。

即便再增加反射层厚度,也可不能使反射层节省增加。

反射层的作用:

1)减少燃料装载量或缩小活性区尺寸。

2)展平热中子通量密度散布。

3)提高反映堆的平均输出功率。

4)屏蔽堆内各类射线。

7)分群理论中是如何分群的?

群常数是如何计算的?

多群中子扩散方程各项的物理意义是什么?

第一项为哪一项第g群中子从反映堆中泄漏出去的损失项;

第二项是经吸收或散射而从第g群中移出的损失项;

第三项是从除第g群外的其他群中子经碰撞后抵达第g群的产生项;

第四项是所有群的中子引发核裂变后产生的中子能量在第g群的中子数(产生项);

8)非均匀栅格中各群中子通量密度是如何散布的?

各群中对哪些因子起作用,起什么样的作用?

非均匀核反映堆有哪些优势?

热中子群:

使热中子利用系数f变小。

共振中子:

使逃脱共振概率P增加。

快中子:

使快中子倍增系数ε增加。

非均匀核反映堆的优势:

1)有效提高中子的逃脱共振吸收概率,从而提高系统的无穷增殖系数。

2)在非均匀栅格内,裂变中子是在燃料块内产生的,这增加了它与U-238核碰撞的概率。

因此,与均匀系统相较,快中子倍增效应有所增加。

3)能够提供独立的冷却剂通道,把反映堆热量依照要求排出堆外。

9)明白得最优栅格,慢化不足和过慢化,和加入冷却剂中加入硼酸对keff及最优栅格位置的阻碍?

在非均匀反映堆中,燃料和冷却剂(或慢化剂)的布置取得的k∞为最大的栅格称为最优栅格,要紧指标是NH/NU比。

在比最优栅格小的NH/NU比时的栅格称为慢化不足,或欠慢化;另一个方向,为过慢化。

冷却剂中加入硼酸使得keff下降,由于f和p的阻碍,最优栅格位置会向NH/NU比变小的方向移动。

10)明白得压水堆中要紧有哪些展平中子通量密度散布的方法?

1)堆芯燃料分区布置;

2)可燃毒物的合理布置;

3)采纳化学补偿溶液;

4)束棒操纵;

5)采纳径向和轴向反射层;

6)采纳最正确提棒方式;

7)幸免大量操纵棒插入中心平面运行;

8)操纵棒提升需要保证对功率散布扰动最小;

第四章反映性随时刻的转变(4学时)

1)反映性的概念。

有哪些单位?

反映性的值代表哪些反映堆状态?

△k/k;pcm;倒时,β等;次临界、临界、缓发临界、瞬发临界、瞬发超临界

2)对压水堆而言,要紧有哪几种效应,如何概念的。

温度效应,中毒效应,燃耗效应

因为堆芯温度转变引发的反映性效应,称为温度效应;

因为核毒物俘获中子而引发的反映性减小,称为中毒效应;

因为燃耗而引发的核燃料减小,致使反映性下降的效应,称为燃耗效应。

3)毒物产生的反映性效应(毒性)的表达式及物理意义。

;分母表示所有原燃料的全数吸收的宏观截面,分子表示全数(或某种)毒物的全数吸收的宏观截面。

4)核密度随时刻转变的微分方程式。

,各项的物理意义是。

5)反映堆启动、变功率和停堆后氙毒随时刻的转变规律。

6)碘坑现象及形成缘故。

1)反映堆在某一功率下运行较长时刻后,氙135的衰变和俘获反映的消失速度与生成速度相等,即与碘135的衰变速度相等,碘135和氙135都达到了平稳状态。

2)现在停堆(降功率),氙的俘获反映再也不发生(或减小),氙的消失途径只能(或要紧)通过衰变消失,而碘也再也不生成(或生成速度减小),因为碘的半衰期小于氙的半衰期,即单位时刻内的由碘生成氙的速度大于氙的衰变消失的速度,因此,氙的浓度比停堆时的浓度呈上升趋势。

3)因为反映堆已停堆(或降功率),碘再也不生成(或生成速度变小),因此氙的浓度在达最大值开始下降,直至衰变到很少(或抵达新的浓度,比原功率下小)。

4)氙起到吸收中子的作用,因此,反映性转变上表现出碘坑。

7)氙振荡的危害、产生条件及克服方式。

氙振荡的危害是:

引发局部功率上升,使燃料元件局部过热,致使燃料元件的损害;堆内温度场交替上升,加速堆内材料的应力破坏。

反映堆尺寸较大;通量密度较高;对热中子通量密度有显著的扰动。

大的负温度系数;移动操纵棒加以补偿。

8)反映堆启动和停堆后的钐毒转变趋势。

9)燃耗深度、卸料燃耗和平均卸料燃耗的概念。

单位质量核燃料所发出的总能量;

从堆芯中卸出燃料所具有的燃耗;

从堆芯中卸出一批燃料所具有的平均燃耗;

 

10)转换比或增殖比的概念。

产生的易裂变核数与消耗的易裂变核素之比;当大于1时,称为增殖比。

第五章温度效应和反映性操纵(4学时)

1)反映堆的温度效应的概念;要紧由哪几种缘故造成?

堆芯材料密度的转变;引发中子温度的转变;铀核共振吸收的转变。

2)什么是燃料温度系数?

燃料温度转变时要紧阻碍六因子中的哪些因子,其与燃料温度的转变关系如何(“体面工程”),与燃耗的转变关系如何?

燃料温度转变1K时所引发的反映性转变;p

3)什么是慢化剂温度系数?

慢化剂温度转变时要紧阻碍六因子中的哪些因子,其与水铀比的转变关系如何,与燃耗的转变关系如何?

慢化剂温度转变1K时所引发的反映性变化:

慢化剂温度上升时,η下降(U238吸收增加,U5吸收裂变比增加);f上升;p下降(慢化能力变小,谱变硬);PL下降(N下降,慢化长度和扩散长度下降);

慢化不足时,确信下降;过慢化时,上升;

4)反映堆温度系数与反映堆稳固运行的关系?

5)空泡系数和功率系数的概念。

功率亏损现象。

堆芯内蒸汽体积含量转变1%所引发的反映性转变;

反映堆功率增加1MW或1%所引发的反映性转变;

反映堆功率增加时,反映性下降;注意在反映堆降功率时,引入反映性。

6)了解阻碍反映堆反映性转变的因素有哪些?

反映性操纵任务有哪些?

反映性操纵的原理有哪些?

压水堆反映性操纵方式是什么?

硼浓度;温度(燃料和慢化剂);毒物氙135和钐149;操纵棒位置的转变;燃料的燃耗;可燃毒物的燃耗。

紧急操纵;功率调剂;补偿操纵。

改变吸收;改变慢化性能;改变燃料含量;改变中子泄漏。

操纵棒、固体可燃毒物棒和硼酸三种操纵方式相结合。

7)反映堆在启动进程、长期运行进程中是如何操纵调剂反映性的?

(了解)

8)操纵棒在反映堆内对中子通量散布有何阻碍?

操纵棒的积分价值和微分价值概念,有什么特点?

操纵棒的干与效应。

+

9)卡棒准那么、停堆深度的概念。

卡棒准那么:

反映堆在任何工况下,当一束反映性价值最大的操纵棒在堆芯顶部被卡住而不能下插时,也能实现反映堆冷态停堆。

停堆裕度:

假定最大价值的一束操纵棒卡在堆外,其余所有操纵棒全数插入堆内,由此使反映堆处于次临界的反映性总量称停堆裕度,或称停堆深度。

10)可燃毒物有哪两种布置方式,哪一种布置方式好,什么缘故?

均匀布置和非均匀布置,非均匀布置好;

引入的反映性转变转变量小。

11)利用化学补偿容易的优势是什么,缺点是什么?

对反映堆的阻碍较为均匀,有利于降低功率峰因子,提高堆的平均功率;可依照需要进行调剂;不占栅格,不设驱动机构,简化堆的结构,提高经济性。

响应慢;可能显现正的温度系数。

12)为了保证慢化剂温度系数,是不是操纵硼酸浓度。

需要操纵。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 财务管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1