高中物理知识点汇编.docx
《高中物理知识点汇编.docx》由会员分享,可在线阅读,更多相关《高中物理知识点汇编.docx(20页珍藏版)》请在冰豆网上搜索。
高中物理知识点汇编
大纲版高中物理知识点汇编
第一章力学
一、力:
力是物体间的相互作用;
1、力的国际单位是牛顿,用N表示;
2、力的图示:
用一条带箭头的有向线段表示力的大小、方向、作用点;
3、力的示意图:
用一个带箭头的线段表示力的方向;
4、力按照性质可分为:
重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;
(1)重力:
由于地球对物体的吸引而使物体受到的力;
(A)重力不是万有引力而是万有引力的一个分力;
(B)重力的方向总是竖直向下的(垂直于水平面向下)
(C)测量重力的仪器是弹簧秤;
(D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;
(2)弹力:
发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;
(A)产生弹力的条件:
二物体接触、且有形变;施力物体发生形变产生弹力;
(B)弹力包括:
支持力、压力、推力、拉力等等;
(C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;
(D)在弹性限度内弹力跟形变量成正比;F=Kx
(3)摩擦力:
两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;
(A)产生磨擦力的条件:
物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;
(B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;
(C)滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;
(D)静摩擦力的大小等于使物体发生相对运动趋势的外力;
(4)合力、分力:
如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;
(A)合力与分力的作用效果相同;
(B)合力与分力之间遵守平行四边形定则:
用两条表示力的线段为临边作平行四边形,则
这两边所夹的对角线就表示二力的合力;
(C)合力大于或等于二分力之差,小于或等于二分力之和;
(D)分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);
二、、既有大小又有方向的物理量叫矢量,(如:
力、位移、速度、加速度、动量、冲量)标量:
只有大小没有方向的物力量(如:
时间、速率、功、功率、路程、电流、磁通量、能量)
三、物体处于平衡状态(静止、匀速直线运动状态)的条件:
物体所受合外力等于零;
(1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;
(2)在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;
(3)处于平衡状态的物体在任意两个相互垂直方向的合力为零;
第二章直线运动
一、机械运动:
一物体相对其它物体的位置变化,叫机械运动;
1、参考系:
为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);
2、质点:
只考虑物体的质量、不考虑其大小、形状的物体;
(1)质点是一理想化模型;
(2)把物体视为质点的条件:
物体的形状、大小相对所研究对象小的可忽略不计时;
如:
研究地球绕太阳运动,火车从北京到上海;
3、时刻、时间间隔:
在表示时间的数轴上,时刻是一点、时间间隔是一线段;
例:
5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;
4、位移:
从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:
描述质点运动轨迹的曲线;
(1)位移为零、路程不一定为零;路程为零,位移一定为零;
(2)只有当质点作单向直线运动时,质点的位移才等于路程;
(3)位移的国际单位是米,用m表示
5、位移时间图象:
建立一直角坐标系,横轴表示时间,纵轴表示位移;
(1)匀速直线运动的位移图像是一条与横轴平行的直线;
(2)匀变速直线运动的位移图像是一条倾斜直线;
(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;
6、速度是表示质点运动快慢的物理量;
(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;
(2)速率只表示速度的大小,是标量;
7、加速度:
是描述物体速度变化快慢的物理量;
(1)加速度的定义式:
a=vt-v0/t
(2)加速度的大小与物体速度大小无关;
(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;
(4)速度改变等于末速减初速。
加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;
(5)加速度是矢量,加速度的方向和速度变化方向相同;
(6)加速度的国际单位是m/s2
二、匀变速直线运动的规律:
1、速度:
匀变速直线运动中速度和时间的关系:
vt=v0+at注:
一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;
(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;
(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;
2、位移:
匀变速直线运动位移和时间的关系:
s=v0t+1/2at2注意:
当物体作加速运动时a取正值,当物体作减速运动时a取负值;3、推论:
2as=vt2-v02
4、作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植;s2-s1=aT2
5、初速度为零的匀加速直线运动:
前1秒,前2秒,……位移和时间的关系是:
位移之比等于时间的平方比;第1秒、第2秒……的位移与时间的关系是:
位移之比等于奇数比;
三、自由落体运动:
只在重力作用下从高处静止下落的物体所作的运动;
1、位移公式:
h=1/2gt22、速度公式:
vt=gt3、推论:
2gh=vt2第三章牛顿定律
一、牛顿第一定律(惯性定律):
一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。
1、只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;2、力是该变物体速度的原因;3、力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)4、力是产生加速度的原因;
二、惯性:
物体保持匀速直线运动或静止状态的性质叫惯性。
1、一切物体都有惯性;2、惯性的大小由物体的质量唯一决定;3、惯性是描述物体运动状态改变难易的物理量;三、牛顿第二定律:
物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。
1、数学表达式:
a=F合/m;2、加速度随力的产生而产生、变化而变化、消失而消失;3、当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。
4、力的单位牛顿的定义:
使质量为1kg的物体产生1m/s2加速度的力,叫1N;
四、牛顿第三定律:
物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;
1、作用力和反作用力同时产生、同时变化、同时消失;
2、作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上;
第四章曲线运动万有引力定律
一、曲线运动:
质点的运动轨迹是曲线的运动;
1、曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向
2、质点作曲线运动的条件:
质点所受合外力的方向与其运动方向不在同一条直线上;且轨迹向其受力方向偏折;
3、曲线运动的特点:
4、曲线运动一定是变速运动;
5、曲线运动的加速度(合外力)与其速度方向不在同一条直线上;
6、力的作用:
(1)力的方向与运动方向一致时,力改变速度的大小;
(2)、力的方向与运动方向垂直时,力改变速度的方向;
(3)、力的方向与速度方向既不垂直,又不平行时,力既搞变速度的大小又改变速度的方向;
二、运动的合成和分解:
1、判断和运动的方法:
物体实际所作的运动是合运动
2、合运动与分运动的等时性:
合运动与各分运动所用时间始终相等;
3、合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;
三、平抛运动:
被水平抛出的物体在在重力作用下所作的运动叫平抛运动;
1、平抛运动的实质:
物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;
2、水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;
3、求解方法:
分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;
三、匀速圆周运动:
质点沿圆周运动,如果在任何相等的时间里通过的圆弧相等,这种运动就叫做匀速圆周运动;
1、线速度的大小等于弧长除以时间:
v=s/t,线速度方向就是该点的切线方向;
2、角速度的大小等于质点转过的角度除以所用时间:
ω=Φ/t
3、角速度、线速度、周期、频率间的关系:
(1)v=2πr/T;
(2)ω=2π/T;(3)V=ωr;(4)、f=1/T;
4、向心力:
⑴定义:
做匀速圆周运动的物体受到的沿半径指向圆心的力,这个力叫向心力。
(2)方向:
总是指向圆心,与速度方向垂直。
⑶特点:
①只改变速度方向,不改变速度大小
②是根据作用效果命名的。
(4)计算公式:
F向=mv2/r=mω2r
5、向心加速度:
a向=v2/r=ω2r
四、开普勒的三大定律:
1、开普勒第一定律:
所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;
说明:
在中学间段,若无特殊说明,一般都把行星的运动轨迹认为是圆;
2、开普勒第三定律:
所有行星与太阳的连线在相同的时间内扫过的面积相等;
3、开普勒第三定律:
所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等;
公式:
R3/T2=K;
说明:
(1)、R表示轨道的半长轴,T表示公转周期,K是常数,其大小之与太阳有关;
(2)、当把行星的轨迹视为圆时,R表示愿的半径;
(3)、该公式亦适用与其它天体,如绕地球运动的卫星;
四、万有引力定律:
自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比.
1、计算公式:
2、解决天体运动问题的思路:
(1)、应用万有引力等于向心力;应用匀速圆周运动的线速度、周期公式;
(2)、应用在地球表面的物体万有引力等于重力;
(3)、如果要求密度,则用:
m=ρV,V=4πR3/3
第五章机械能
一、功:
功等于力和物体沿力的方向的位移的乘积;
1、计算公式:
w=Fs;
2、推论:
w=Fscosθ,θ为力和位移间的夹角;
3、功是标量,但有正、负之分,力和位移间的夹角为锐角时,力作正功,力与位移间的夹角是钝角时,力作负功;
二、功率:
是表示物体做功快慢的物理量;
1、求平均功率:
P=W/t;
2、求瞬时功率:
p=Fv,当v是平均速度时,可求平均功率;
3、功、功率是标量;
三、功和能间的关系:
功是能的转换量度;做功的过程就是能量转换的过程,做了多少功,就有多少能发生了转化;
四、动能定理:
合外力做的功等于物体动能的变化。
1、数学表达式:
w合=mvt2/2-mv02/2
2、适用范围:
既可求恒力的功亦可求变力的功;
3、应用动能定理解题的优点:
只考虑物体的初、末态,不管其中间的运动过程;
4、应用动能定理解题的步骤:
(1)、对物体进行正确的受力分析,求出合外力及其做的功;
(2)、确定物体的初态和末态,表示出初、末态的动能;
(3)、应用动能定理建立方程、求解
五、重力势能:
物体的重力势能等于物体的重量和它的速度的乘积。
1、重力势能用EP来表示;
2、重力势能的数学表达式:
EP=mgh;
3、重力势能是标量,其国际单位是焦耳;
4、重力势能具有相对性:
其大小和所选参考系有关;
5、重力做功与重力势能间的关系
(1)、物体被举高,重力做负功,重力势能增加;
(2)、物体下落,重力做正功,重力势能减小;
(3)、重力做的功只与物体初、末为置的高度有关,与物体运动的路径无关
五、机械能守恒定律:
在只有重力(或弹簧弹力做功)的情形下,物体的动能和势能(重力势能、弹簧的弹性势能)发生相互转化,但机械能的总量保持不变。
1、机械能守恒定律的适用条件:
只有重力或弹簧弹力做功;例:
2、机械能守恒定律的数学表达式:
3、在只有重力或弹簧弹力做功时,物体的机械能处处相等;例:
4、应用机械能守恒定律的解题思路
(1)、确定研究对象,和研究过程;
(2)、分析研究对象在研究过程中的受力,判断是否遵受机械能守恒定律;
(3)、恰当选择参考平面,表示出初、末状态的机械能;
(4)、应用机械能守恒定律,立方程、求解;
第六章机械振动和机械波
一、机械振动:
物体在平衡位置附近所做的往复运动,叫机械振动。
1、平衡位置:
机械振动的中心位置;
2、机械振动的位移:
以平衡位置为起点振动物体所在位置为终点的有向线段;
3、回复力:
使振动物体回到平衡位置的力;
(1)、回复力的方向始终指向平衡位置;
(2)、回复力不是一重特殊性质的力,而是物体所受外力的合力;
4、机械振动的特点:
(1)往复性;
(2)、周期性;
二、简谐运动:
物体所受回复力的大小与位移成正比,且方向始终指向平衡位置的运动;
(1)、回复力的大小与位移成正比;
(2)、回复力的方向与位移的方向相反;
(3)、计算公式:
F=-Kx;
简谐运动的特例:
音叉、摆钟、单摆、弹簧振子;
一、全振动:
振动物体如:
从0出发,经A,再到O,再到A/,最后又回到0的周期性的过程叫全振动;
例1:
从A至o,从o至A/,是一次全振动吗?
例2:
振动物体从A/,出发,试说出它的一次全振动过程;
二、振幅:
振动物体离开平衡位置的最大距离。
1、振幅用A表示;
2、最大回复力F大=KA;
3、物体完成一次全振动的路程为4A;
4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;
三、周期:
振动物体完成一次全振动所用的时间;
1、T=t/n(t表示所用的总时间,n表示完成全振动的次数)
2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于T/4;
四、频率:
振动物体在单位时间内完成全振动的次数;
1、f=n/t;
2、f=1/T;
3、固有频率:
由物体自身性质决定的频率;
五、简谐运动的图像:
表示作简谐运动的物体位移和时间关系的图像。
1、若从平衡位置开始计时,其图像为正弦曲线;
2、若从最远点开始计时,其图像为余弦曲线;
3、简谐运动图像的作用:
(1)、确定简谐运动的周期、频率、振幅;
(2)、确定任一时刻振动物体的位移;
(3)、比较不同时刻振动物体的速度、动能、势能的大小:
离平衡位置跃进动能越大、速度越大,势能越小;
(4)、判断某一时刻振动物体的运动方向:
质点必然向相邻的后一时刻所在位置运动
4、作受迫振动的物体的振动频率等于驱动力的频率与其固有频率无关;物体发生共振的条件:
物体的固有频率等于驱动力的频率;
六、、单摆:
用一轻质细绳一端固定一小球,另一端固定在悬点的装置。
1、当单摆的摆角很小(小于5度)时,所作的运动是简谐运动;
2、单摆的周期公式:
T=2π(l/g)1/2
3、单摆在摆动过程中的能量关系:
在平衡位置动能最大、重力势能最小;在最远点动能为零,重力势能最大;
七、机械波:
机械振动在介质中的传播就形成了机械波。
1、产生机械波的条件:
(1)有波源;
(2)有介质;
2、机械波的实质:
机械波只是机械振动这种运动形式的传播,介质本身不会沿播的传播方向移动;
3、波在传播时,各质点所作的运动形式:
在波的传播过程中,各质点只在平衡位置两侧作往复运动,并不随波的前进而前移。
4、波的作用:
(1)传播能量;
(2)传播信息;
5、机械波的种类:
(1)、横波:
质点的振动方向和播的传播方向垂直,这样的波叫横波。
例:
水波、绳波、人浪等等;
(A)波峰:
凸起的最高点叫波峰;
(B)波谷:
凹下的最低点叫波谷;
(2)、纵波:
质点的振动方向和波的传播方向平行的波叫纵波;
(A)、疏部:
质点分布最稀疏的部分叫疏部;
(B)、密部:
质点分布最密集的部分叫密部;
(C)、声波是纵波;
6、机械波的图像:
建立一直角坐标系,横轴表示各质点的位置,纵轴表示各质点偏离平衡位置的位移,联接各点(x,y)所成的曲线就是机械波的图像;机械波的图像是正弦曲线;
7、波长:
两个相邻的,在振动过程中对平衡位置位移总是相等的质点间的距离叫波长;
(1)、波长用λ表示;
(2)、两个相邻的波峰或波谷间的距离等于波长;
8、介质中各质点的振动频率(周期)等于波源的振动频率(周期),这个频率就叫波动频率(周期);在一个周期内各质点传播的距离等于一个波长;
9、波速、波在介质中的传播速度叫波速;
(1)、波速等于单位时间内波峰或波谷(密部或疏部)向前移动的距离;
(2)、波在介质中是匀速传波的(波速恒定不变);
10、波长、波速、频率间的关系;V=λf
11、机械波在介质中的传播速度只与介质有关;
12、在波形图中质点向相邻的前一质点所在位置运动;
第七章分子动理论能量守恒气体(该部分在北京地区考试已经删除)
一、物质是由分子组成的;1、在物理上我们把所有够成物质的微粒(分子、原子、离子)统称分子;2、测量分子大小的方法:
单分子油膜法:
取一滴油滴,让其在水面上尽可能的散开,形成一层单分子油膜,则油滴的体积除以油膜的面积就是油分子的直径。
d=vo/s3、分子直径的数量级为10-10m;二、阿伏加德罗常数:
1mol物质所含的分子数叫阿伏加德罗常数。
1、阿伏加德罗常数用NA来表示:
NA=6.02×1023;2、阿伏加德罗常数是联系宏观物质(摩尔体积、摩尔质量)和微观物质(分子质量、分子体积)的桥梁;
(1)、v0=vm/NA
(2)、m0=M/NA;(3)n=N×NA3、分子质量的数量级:
10-26kg;
三、构成物质的分子在不停的作无规则运动;四、证明分子在不停的作无规则运动的实验:
1、扩散现象:
两个不同的物体相互接触,彼此进入对方的现象;
(1)其实质:
是分子的运动;
(2)温度越高扩散越快;二物质密度(浓度)相差越大,扩散越快;2、布朗运动:
悬浮在液体或气体中的细小微粒所作的无规则运动;
(1)布朗运动的实质:
布朗运动并不是分子的运动,而是分子作无规则运动的反应;
(2)布朗运动的特点:
微粒越小,温度越高,布朗运动越剧烈;(3)布朗运动是无规则的运动;(4)布朗运动发生的原因:
微粒各方向所受分子的碰撞不均,使微粒各方向受力不等,从而使微粒无规则的运动;五、温度的微观物理意义:
温度是分子平均动能的标志;六、热运动:
分子的无规则运动叫热运动。
七、构成物质的分子间有间隙;八、构成物质的分子间有相互作用的引力和斥力;1、平衡位置:
当分子间的引力等于斥力时,分子所处的位置;此时分子间的距离为r0;2、当分子间的距离r=r0时,引力等于斥力,分子力为零;3、当r﹤r0时,引力小于斥力,分子力表现为斥力;4、当r﹥r0分子间的距离时,引力大于斥力,分子力表现为引力;5、分子间的引力和斥力始终同是存在;6、分子间的引力和斥力都随分子间距离的增加而减小,但引力减小的快;随距离的减小而增大,斥力增大得快;
九、内能:
物体中所有分子动能和分子势能的总合叫内能;1、一切物体都有内能;2、物体的内能与温度(分子动能)体积(分子势能)物质的量有关;3、理想状态下的气体的内能与其体积无关(分子势能始终未零)十、改变内能的两种方式:
1、做功;2、热传递;
(1)传导;
(2)对流;(3)辐射;
十一、热力学第一定律:
物体内能的变化量等于外界对物体做的功和物体从外界吸收的热量之和;数学表达式:
△U=Q+W;1、吸热,Q为正;放热Q为负;2、外界对物体做正功W为正,外界对物体做负功(物体对外界做正功)W为负;十二、能量守恒定律:
能量既不会凭空产生,亦不会凭空消失,只能从一种形式转化成别的形式,或者从一个物体转移到别的物体,在转化和转移中,其总量不变;十三、热力学第二定律:
1、不可能从单一热源吸收热量并把它全部用来做功而不引起其它变化;2、不可能使热量由低温物体传到高温物体而不引起其它变化;3、本质:
热理学第二定律揭示了有大量分子参与的宏观过程都有方向性;十四、热力学温度:
以-273.15℃这个下限为起点的温度。
1、摄氏温度与热力学温度间的关系:
T=t+273.15K2、温度的国际单位是开尔文K;3、热力学第三定律:
热力学零度不可达到;
十五、分子动能:
分子由于作物规则运动而具有的能。
1、分子的平均动能:
物体所有分子的动能的平均值。
2、温度是分子平均动能的标志;3、分子动能由温度、物质的量共同决定
十六、分子势能:
分子间由于有相互作用力而具有的能。
1、当r﹤r0时,r变大,斥力作正功,分子势能减小;2、当r﹥r0时,变大,引力作负功,分子势能增大;3、当距离r=r0时,分子势能最小;4、物体的分子势能与物体的体积,物质的量有关;十七、能量的转换和守恒定律:
能量既不会凭空产生,亦不会凭空消失,它只能从一种形式转化成另一种形式,或者从一个物体转移到别的物体;在转化和转移过程中其总量不变;十八、气体压强的特点:
1、气体向各个方向的压强相等;如:
我们气球时候各个方向所受压力相等;2、产生气体压强的原因是气体分子的碰撞而产生的;如:
十九、格拉伯龙方程:
PV=nRT1、在温度一定是,体积小强于大
2、在压强一定时,温度高,体积大;
3、在体积一定时,温度高,压强大;
第八章电场
一、三种产生电荷的方式:
1、摩擦起电:
(1)正点荷:
用绸子摩擦过的玻璃棒所带电荷;
(2)负电荷:
用毛皮摩擦过的橡胶棒所带电荷;(3)实质:
电子从一物体转移到另一物体;2、接触起电:
(1)实质:
电荷从一物体移到另一物体;
(2)两个完全相同的物体相互接触后电荷平分;
(3)、电荷的中和:
等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;3、感应起电:
把电荷移近不带电的导体,可以使导体带电;
(1)电荷的基本性质:
同种电荷相互排斥、异种电荷相互吸引;
(2)实质:
使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;4、电荷的基本性质:
能吸引轻小物体;二、电荷守恒定律:
电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。
三、元电荷:
一个电子所带的电荷叫元电荷,用e表示。
1、e=1.6×10-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍;四、库仑定律:
真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。
电荷间的这种力叫库仑力,1、计算公式:
F=kQ1Q2/r2(k=9.0×109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力;五、电场:
电场是使点电荷之间产生静电力的一种物质。
1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:
电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质
六、电场强度:
放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;1、定义式:
E=F/q;E是电场强度;F是电场力;q是试探电荷;2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)3、该公式适用于一切电场;4、点电荷的电场强度公式:
E=kQ/r2七、电场的叠加:
在空间若有几个点电荷同时存在,则空间某点的电场