选择.docx

上传人:b****5 文档编号:6216529 上传时间:2023-01-04 格式:DOCX 页数:18 大小:105.54KB
下载 相关 举报
选择.docx_第1页
第1页 / 共18页
选择.docx_第2页
第2页 / 共18页
选择.docx_第3页
第3页 / 共18页
选择.docx_第4页
第4页 / 共18页
选择.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

选择.docx

《选择.docx》由会员分享,可在线阅读,更多相关《选择.docx(18页珍藏版)》请在冰豆网上搜索。

选择.docx

选择

综合练习(1-5章)

一、填空题

1.统计学是一门_______、_______、_______和_______统计数据的科学。

2.统计学是一门收集、整理、显示和分析统计数据的科学,其目的是探索数据内在的。

3.___________是整个统计学的基础和统计研究工作的第一步;___________是现代统计学的核心和统计研究工作的关键环节;

4.描述统计是用和对数据进行描述的统计方法。

5.推断统计是根据对进行估计、假设检验、预测或其他推断的统计方法。

6.抽样调查中误差的来源有_______和_______两类。

7.__________和__________是显示统计资料的两种主要方式。

8.从统计方法的构成来看,统计学可以分成________、________。

9.统计调查的方法主要有_______、_______。

10.美国10家公司在电视广告上的花费如下(百万美元):

72,63.1,54.7,54.3,29,26.9,25,23.9,23,20。

样本数据的中位数为

11.分组的目的是找出数据分布的数量规律性,因此在一般情况下,组数不应少于5组,也不应多于组。

12.现有数据3,3,1,5,13,12,11,9,7。

它们的中位数是。

13.众数、中位数和均值中,不受极端值影响的是______。

14.和是从数据分布形状及位置角度来考虑的集中趋势代表值,而是经过对所有数据计算后得到的集中趋势值。

15.下列数据是某班的统计学考试成绩:

72,90,91,84,85,57,90,84,77,84,69,77,66,87,55,95,86,78,86,85,87,92,73,82。

这些成绩的极差是。

16.变异系数为0.4,均值为20,则标准差为。

17.在统计学考试中,男生的平均成绩为75分,女生的平均成绩为80分,如果女生人数占全班人数的2/3,则全班统计学平均成绩为____。

18.分组数据中各组的值都减少1/2,每组的次数都增加1倍,则加权算术平均数将_______。

19.已知某村2005年人均收入为2600元,收入的离散系数为0.3,则该村村民平均收入差距(标准差)为______。

20.根据下列样本数据3,5,12,10,8,22计算的标准差为(保留3位有效数字)。

21.设随机变量X~N(2,4),则P{X≤2}=_______________.

22.考虑由2,4,10组成的一个总体,从该总体中采取重复抽样的方法抽取容量为3的样本,则抽到任一特定样本的概率为。

23.随机变量根据取值特点的不同,一般可分为和。

24.某地区六年级男生身高服从均值为164cm、标准差为4cm的正态分布,若从该地区任选一个男生,其身高在160cm以下的概率为(用标准正态分布函数表示)。

25.假定总体共有1000个单位,均值为32,标准差为5。

采用不重复抽样的方法从中抽取一个容量为30的简单随机样本,则样本均值的标准差为(保留4位小数)。

26.从一个标准差为5的总体中抽取一个容量为160的样本,样本均值为25,样本均值的标准差为______。

27.从标准差为50的总体中抽取容量为100的简单随机样本,样本均值的标准差为____。

28.设正态分布总体的方差为120,从总体中随机抽取样本容量为10的样本,样本均值的方差为。

29.在统计学中,常用的概率抽样方法有简单随机抽样、分层抽样、和。

30.从正态分布的总体中随机抽取容量为10的样本,计算出样本均值的方差为55,则总体方差为。

31.总体的均值为75,标准差为12,从此总体中抽取容量为36的样本,则样本均值大于78的概率为(用标准正态分布函数表示)。

32.某班学生在统计学考试中的平均得分是70分,标准差是3分,从该班学生中随机抽取36名,计算他们的统计学平均成绩,则平均分超过71分的概率是(用标准正态分布函数表示)。

33.某产品的平均重量是54公斤,标准差为6公斤,如果随机抽取36件产品进行测量,则其均值不超过52公斤的概率为(用标准正态分布函数表示)。

34.智商的得分服从均值为100,标准差为16的正态分布。

现从总体中抽取一个容量为n的样本,样本均值的标准差为2,求得样本容量n=。

35.评价估计量好坏的三个标准是、和。

36.如果估计量

相比满足,我们称

是比

更有效的一个估计量。

37.当时,我们称估计量

是总体参数

的一个无偏估计量。

38.总体参数估计的方法有和两种。

39.在其他条件相同的情况下,99%的置信区间比90%的置信区间____。

40.在简单重复抽样条件下,当允许误差E=10时,必要的样本容量n=100;若其他条件不变,当E=20时,必要的样本容量为_________。

41.某地区的写字楼月租金的标准差80元,要估计总体均值的95%的置信区间,要求允许误差不超过15元,应抽取的样本容量至少为。

42.拥有工商管理学士学位的大学毕业生年薪的标准差大约为2000元,假定想要估计平均年薪95%的置信区间,希望允许误差为400元,则应抽取个毕业生作为样本。

43.在其他条件不变的情况下,总体数据的方差越大,估计时所需要的样本越______。

44.在一次假设检验中,当显著性水平

时拒绝原假设,则用显著性水平

时________。

45.某一贫困地区所估计的营养不良人数高达20%,然而有人认为实际上比这个比例还要高,要检验该说法是否正确,则原假设与备择假设是。

46.在假设检验中,第二类错误是指。

47.在假设检验中,第一类错误是指。

48.在假设检验中,第二类错误被称为___________。

49.某厂生产的化纤纤度服从正态分布,纤维的纤度的标准均值为1.40。

某天测得25根纤维的纤度的均值

,要检验与原来的标准均值相比是否有所变化,其原假设与备择假设是。

50.当原假设正确而被拒绝时,所犯的错误为第__________错误;只有在接受原假设时,我们可能犯第__________错误。

51.在假设检验中,等号“=”总是放在上。

52.在假设检验中,首先需要提出两种假设,即和。

二、单项选择题

1.为了估计全国高中学生的平均身高,从20个城市选取了100所中学进行调查。

在该项研究中,研究者感兴趣的变量是()

A.100所中学的学生数B.全国高中学生的身高

C.20个城市的中学数D.全国的高中学生数

2.为了估计全国高中学生的平均身高,从20个城市选取了100所中学进行调查。

在该项研究中,研究者感兴趣的总体是()

A.100所中学B.20个城市

C.全国的高中学生D.100所中学的高中学生

3.1990年发表的一篇文章讨论了男性和女性MBA毕业生起薪的差别。

文章称,从前20名商学院毕业的女性MBA的平均起薪是54749美元,中位数是47543美元,标准差是10250美元。

根据这些可以判断,女性MBA起薪的分布形状是()

A.尖峰,对称B.右偏C.左偏D.均匀

4.在某公司进行的计算机水平测试中,新员工的平均得分是80分,标准差是5分,中位数是86分,则新员工得分的分布形状是()

A.对称的B.左偏的C.右偏的D.无法确定

5.加权算术平均数的大小()

A.主要受各组标志值大小的影响,而与各组次数的多少无关。

B.主要受各组次数多少的影响,而与各组标志值的大小无关

C.既受各组标志值大小的影响,也受各组次数多少的影响

D.既不受各组标志值大小的影响,也不受各组次数多少的影响

6.在对几组数据的离散程度进行比较时使用的统计量通常是()

A.极差B.平均差C.离散系数D.标准差

7.计算标准差时,如果从每个数据中都减去10,则计算结果与原来的标准差相比()

A.变大10B.不变C.变小10D.数据不全,无法计算

8.若基尼系数为0,表示收入分配()

A.比较平均B.绝对平均C.绝对不平均D.无法确定

9.当偏态系数大于0时,分布是()

A.对称的B.左偏的C.右偏的D.无法确定

10.在比较两组数据的离散程度时,不能直接比较它们的方差,因为两组数据的()。

A.标准差不同B.方差不同C.数据个数不同D.均值不同

11.用未分组资料计算算术平均数与先分组再计算算术平均数相比,二者结果()

A.相同B.不相同

C.可能相同,也可能不同D.组距数列下相同

12.假定某组距数列的第一组为:

60以下,其相邻组为60—70,则第一组的组中值等于(   )

A.25B.35C.45D.55

13.均值为20,变异系数为0.4,则标准差为()

A.50B.8C.0.02D.4

14.最近发表的一份报告称,由“150部新车组成的一个样本表明,外国新车的价格明显高于本国生产的新车”。

这是一个()的例子

A.随机样本B.描述统计C.统计推断D.总体

15.对于右偏分布,均值、中位数和众数之间的关系是()

A.均值>中位数>众数B.中位数>均值>众数

C.众数>中位数>均值D.众数>均值>中位数

16.直方图一般可用于表示()

A.次数分布的特征B.累积次数的分布

C.变量之间的函数关系D.数据之间的相关性

17.一项关于大学生体重的调查显示,男生的平均体重是60公斤,标准差为5公斤;女生的平均体重是50公斤,标准差为5公斤。

据此数据可以判断()

A.男生体重的差异较大B.女生体重的差异较大

C.男生和女生的体重差异相同D.无法确定

18.在对几组数据的离散程度进行比较时使用的统计量通常是()

A.极差B.平均差C.标准差D.离散系数

19.甲班学生平均成绩80分,标准差8.8分,乙班学生平均成绩70分,标准差8.4分,因此()

A.甲班学生平均成绩代表性好一些B.乙班学生平均成绩代表性好一些

C.无法比较哪个班学生平均成绩代表性好D.两个班学生平均成绩代表性一样

20.一组数据的偏态系数为1.3,表明该组数据的分布是()

A.正态分布B.右偏分布C.左偏分布D.平顶分布

21.计算标准差时,如果从每个数据中都减去10,则计算结果与原来的标准差相比()

A.变大10B.变小10C.不变D.数据不全,无法计算

22.对某地区某天的平均温度进行测量,结果为12℃。

这里使用的计量尺度是()

A.定类尺度B.定序尺度C.定比尺度D.定距尺度

23.两组数据的均值不等,但标准差相等,则()

A.均值小,差异程度大B.均值大,差异程度大

C.两组数据的差异程度相同D.无法判断

24.若随机变量X~N(µ,σ2),Z~N(0,1),则()

A.

B.

C.

D.

25.若随机变量X~N(µ,σ2),则随着σ的增大,概率P{|X-µ|<σ}将()

A.单调增大B.单调减少C.保持不变D.增减不定

26.为了调查某校学生的购书费用支出,从男生中抽取60名学生调查,从女生中抽取40名调查,这种调查方法是()

A.简单随机抽样B.整群抽样C.系统抽样D.分层抽样

27.在重复抽样条件下,样本均值的标准差计算公式是()

A、

B、

C、

D、

28.在抽样组织形式中,最简单和最基本的一种是()

A、整群抽样B、等距抽样C、类型抽样D、简单随机抽样

29.某学校学生的年龄分布是右偏的,均值为22,标准差为4.45。

如果采取重复抽样的方法从该校抽取容量为100的样本,则样本均值的抽样分布是()

A.正态分布,均值为22,标准差为0.445

B.分布形状未知,均值为22,标准差为4.45

C.正态分布,均值为22,标准差为4.45

D.分布形状未知,均值为22,标准差为0.445

30.某总体容量为N,其标志值的变量服从正态分布,均值为μ,方差为σ。

是样本容量为n的简单随机样本的均值(不重复抽样),则

的分布为()。

A.

B.

C.

D.

31.n个相互独立的标准正态分布的平方和服从()

A.参数为n的

分布B.参数为(n,1)的F分布

C.参数为(1,n)的F分布D.参数为(1,n)的正态分布

32.总体的均值为24,标准差为16。

从该总体中抽取一个容量为64的随机样本,则样本均值的抽样分布为()

A.N(24,4)B.N(16,2)C.N(24,2)D.N(16,1)

33.在下列关于样本均值的抽样分布的描述中,正确的是()

A.抽样分布总是近似服从正态分布

B.重复抽取容量为n的样本并计算样本均值即可得到总体分布

C.抽样分布的均值等于总体均值

D.抽样分布的标准差等于总体标准差

34.抽样调查抽取样本时,必须遵守的原则是(   )。

A.灵活性   B.可靠性   C.准确性   D.随机性

35.有一批灯泡共1000箱,每箱200个,现随机抽取20箱并检查这些箱中全部灯泡,此种检验属于()。

A、纯随机抽样B、类型抽样C、整群抽样D、等距抽样

36.在同样的情况下,重置抽样的平均误差与不重置抽样的平均误差相比()

A.两者相等B.前者大于后者C.前者小于后者D.没有可比性

37.正态总体方差已知时,在小样本条件下,估计总体均值使用的统计量是()

A.

B.

C.

D.

38.对于简单随机重复抽样,在其他条件不变的情况下,若要求允许误差Δ缩小为原来的一半,则样本容量必须()

A.扩大为原来的2倍B.扩大为原来的4倍

C.缩小为原来的1/4D.缩小为原来的1/2

39.

40.当样本容量一定时,置信区间的宽度()

A.随着置信水平的增大而减小B.随着置信水平的增大而增大

C.与置信水平的大小无关D.与置信水平的平方成反比

41.当置信水平一定时,置信区间的宽度()

A.随着样本容量的增大而减小B.随着样本容量的增大而增大

C.与样本容量的大小无关D.与样本容量的平方根成正比

42.下面说法正确的是()

A.置信区间越宽,估计的准确性越高B.置信区间越窄,估计的准确性越低

C.置信区间越宽,估计的可靠性越大D.置信区间越宽,估计的可靠性越小

43.正态总体方差未知时,在小样本条件下,估计总体均值使用的统计量是()

A.

B.

C.

D.

44.假设总体方差已知,显著性水平为α,对于假设检验H0:

μ=μ0,H1:

μ<μ0,当()时,拒绝原假设。

A.|Z|>Zα/2B.Z<-ZαC.t<-tα(n-1)D.t>tα(n-1)

45.假设总体方差已知,显著性水平为α,对于假设检验H0:

μ=μ0,H1:

μ>μ0,当()时,拒绝原假设。

A.|Z|>Zα/2B.Z>ZαC.t>tα(n-1)D.t<-tα(n-1)

46.若假设形式为H0:

μ≥μ0,H:

μ<μ0,当随机抽取一个样本时,其均值大于μ0,则()。

A、肯定接受原假设,但有可能犯第一类错误,

B、有可能接受原假设,但有可能犯第一类错误,

C、肯定接受原假设,但有可能犯第二类错误,

D、有可能接受原假设,但有可能犯第二类错误。

47.在一次假设检验中,当显著性水平α=0.01原假设被拒绝时,则用α=0.05时()

A.一定不会被拒绝B.一定会被拒绝

C.需要重新检验D.有可能拒绝原假设

48.在假设检验中,如果所计算出的P值越小,则说明()

A.不利于原假设的证据越强B.不利于原假设的证据越弱

C.不利于备择假设的证据越强D.不利于备择假设的证据越弱

49.设总体X服从正态分布N(μ,1),欲检验假设H0∶μ=μ0,H1∶μ≠μ0,则检验用的统计量是(   )

A、

B、

C、

D、

50.在均值的假设检验中,如果是右侧检验,计算出来的P值为为0.052,在

的情况下,则()

A.接受原假设B.接受备择假设

C接受备择假设

D不确定

51.拒绝域的大小与我们事先选定的()

A.统计量有一定关系B.临界值有一定关系

C.统计分布有一定关系D.显著性水平有一定关系

52.对于给定的显著性水平

,拒绝原假设的条件是(   )

A.

B.

C.

D.

53.

54.为了估计全国大学学生的平均身高,从20个城市选取了100所大学进行调查。

在该项研究中,样本是()

A.100所大学B.20个城市C.全国的大学生D.100所大学的在校生

55.某班学生的统计学平均成绩是70分,最高分为96分,最低分为62分。

根据这些信息,可以计算的离散程度的测度指标是()。

A.方差B.极差C.标准差D.离散系数

56.离散系数为0.4,均值为20,则标准差为()。

A.80B.0.02C.4D.8

57.根据概率的古典概型,某一随机事件的概率就是()

A.大量重复随机试验中该随机事件出现的次数占试验总次数的比重

B.该随机事件包含的基本事件数占样本空间中基本事件总数的比重

C.大量重复随机试验中该随机事件出现的次数

D.专家估计该随机事件出现的可能性大小

58.总体的均值为50,标准差为8,现从该总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分别是()。

A.50,8B.50,1C.50,4D.无法确定

59.如果样本统计量的抽样分布的均值等于它要估计的总体参数,则该统计量被称作()。

A.标准误差较小的统计量B.参数的点估计

C.参数的有效估计D.参数的无偏估计

60.当正态总体的方差未知时,且为小样本条件下,估计总体均值使用的分布是()。

A.正态分布B.

分布C.

分布D.

分布

61.研究者想收集证据予以支持的假设通常称为:

A.原假设B.备择假设C.合理假设D.正常假设

62.在大样本情况下,检验总体均值所使用的统计量是:

A.

B.

C.

D.

63.在抽样中先将总体各单位按某种顺序排列,并按某种规则确定一个随机起点,然后,每隔一定的间隔抽取一个单位,直至抽取n个单位形成一个样本。

这样的抽样方式称为()。

A.简单随机抽样B.分层抽样C.系统抽样D.整群抽样

64.《政治算术》一书的作者是()。

A.威廉•配第B.约翰•格朗特C.海尔门•康令D.亚道尔夫•凯特勒

65.某城市60岁以上的老人中有许多没有参加医疗保险,下面是25位被调查老人的年龄:

68,73,66,76,86,74,61,89,65,90,69,92,76,62,81,63,68,81,70,73,60,87,75,64,82。

上述调查数据的中位数是()。

A.70B.73C.74D.73.5

66.五所大学新生的教材费用如下(元):

200,250,375,125,280。

教材费用的方差是()。

A.92.965B.8642.5C.83.1505D.6914.0

67.在比较两组数据的离散程度时,不能直接比较它们的方差,因为两组数据的()。

A.标准差不同B.方差不同C.数据个数不同D.均值不同

68.下列随机试验中,概率测度遵循古典概型的是()

A.观察一家超市某日的营业额

B.掷两个骰子,记录它们各自出现的点数

C.随机抽5个学生来回答某个问题,观察回答正确的学生人数

D.观察一射击选手射靶10次的中靶次数

69.智商的得分服从均值为100,标准差为16的正态分布。

现从总体中抽取一个容量为n的样本,样本均值的标准差为2,试求样本容量为()。

A.16B.64C.8D.无法确定

70.参数估计中的估计量是指()。

A.用来估计总体参数的统计量的名称B.用来估计总体参数的统计量的具体数值

C.总体参数的名称D.总体参数的具体数值

71.若一项假设规定显著性水平为

,下列的表述正确的是:

A.拒绝

的概率小于5%B.不拒绝

的概率为5%

C.

为假时不被拒绝的概率为5%D.

为真时被拒绝的概率小于5%

72.在假设检验中,原假设和备择假设:

A.都有可能成立B.都有可能不成立

C.只有一个成立而且必有一个成立D.原假设一定成立,备择假设不一定成立

73.统计分组的核心问题是()。

A.划分各组界限B.选择分组标志C.确定组距D.确定组数

综合练习(8-9章)

一、填空题

53.总指数的编制方法,其基本形式有两种,一是___________,二是___________。

54.若2002年的国内生产总值的计划任务为570元,一季度的季节比率为105%,则2002年一季度的计划任务应为________。

55.某市1996年实际国内生产总值为985万元,比上年增长21%,扣除物价因素影响,实际只比上年增长14%,该市国内生产总值的物价总指数为(保留4位有效数字)。

56.时间序列的构成要素通常可以归纳为四种:

_______、_______、________、_______。

57.若居民在某月以相同的开支额购买到的消费品比上月减少10%,则消费价格指数应为(用百分比表示,保留到整数)。

58.某机场近几年春节所在的一季度旅客运输的季节比率为150%,上年全年发送旅客300万人,预计今年将比上年增加20%,预计今年春节所在的一季度将发送旅客万人。

59.根据月度时间数列资料计算的各月季节比率之和应为。

60.某种商品的价格比上年上涨5%,销售额下降8%,则该商品销售量指数是(保留3位有效数字)。

61.

62.在时间序列中,如果不存在季节变动,则各个季度的季节指数应该等于____。

63.某地区GDP保持10%的年增长率,预计翻两番的年数是____。

64.如果价格指数降低后,原来的支出可多购10%的商品,则价格指数应为____。

65.一般而言,在编制质量指标指数时,其同度量因素必须是一个与之

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 哲学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1