热湿地区采用的辐射冷顶板加置换通风系统secret.docx

上传人:b****6 文档编号:6158380 上传时间:2023-01-04 格式:DOCX 页数:9 大小:99.12KB
下载 相关 举报
热湿地区采用的辐射冷顶板加置换通风系统secret.docx_第1页
第1页 / 共9页
热湿地区采用的辐射冷顶板加置换通风系统secret.docx_第2页
第2页 / 共9页
热湿地区采用的辐射冷顶板加置换通风系统secret.docx_第3页
第3页 / 共9页
热湿地区采用的辐射冷顶板加置换通风系统secret.docx_第4页
第4页 / 共9页
热湿地区采用的辐射冷顶板加置换通风系统secret.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

热湿地区采用的辐射冷顶板加置换通风系统secret.docx

《热湿地区采用的辐射冷顶板加置换通风系统secret.docx》由会员分享,可在线阅读,更多相关《热湿地区采用的辐射冷顶板加置换通风系统secret.docx(9页珍藏版)》请在冰豆网上搜索。

热湿地区采用的辐射冷顶板加置换通风系统secret.docx

热湿地区采用的辐射冷顶板加置换通风系统secret

Radiationalpanelcoolingsystemwithcontinuousnatural

crossventilationforhotandhumidregions

Abstract

Thispaperinvestigatesahybridcoolingsystem,utilizingwind-drivencrossventilationandradiationpanelcoolinginanofficesetting.Thecharacteristicsoftheindoorenvironmentareexaminedusingcomputationalfluiddynamics(CFD)simulation,whichiscoupledwitharadiationheattransfersimulation,andHVACcontrolinwhichthePMVvalueforahumanmodelinthecenteroftheroomiscontrolledtoattainthetargetvalue.Thesystemisdevisedwithanenergy-savingstrategy,whichutilizesstratifiedroomairwithaverticaltemperaturegradient.Thecooledairsettlesdownwithinthelowerpartoftheroom,whilethehotandhumidairpassesthroughtheupperregionoftheroom,sweepingouttheheatandcontaminantsgeneratedindoors.Thisstrategyisfoundtobequiteenergy-efficientintheintermediateseasonsofspringandautumninJapan.Evenunderhotandhumidoutdoorconditions,thehybridsystemcoupledwithradiationcoolingwouldbringsignificantenergysavingsarepossiblecomparedwithahybridsystemcoupledwithunderfloorair-conditioning.

1.Introduction

Wind-drivencrossventilationisconsideredtobeapromisingenergy-effectivestrategy,sinceitutilizesnature’spower.AdjustingtheindoorenvironmentbynaturalcrossventilationwasthetraditionalmethodinhotandhumidregionsofAsiaincludingJapan.However,inmodernbuildings,wherecertainty,reliability,andefficiencyarepreferred,theuseofwind-drivencrossventilationaloneisinadequate.

Ahybridairconditioningsystemwithcontrollednaturalventilation,oracombinationofnaturalventilationwithmechanicalairconditioningisconsideredtobeabletoovercomethedeficiencyofwind-drivencrossventilation,andhassignificantenergy-reducingeffects.Manystudieshavebeenconductedonnaturalventilationsystemsandhybridair-conditioningsystemsinEuropeandJapan。

InJapaninparticular,ahybridcoolingsystem,usingunderfloorairconditioningincorporatingnaturalventilationisprimarilyused。

Butmanystudieshavediscoveredthatradiationcoolingismoreeffectivethanconventionalair-coolingsystemsinmanyareas。

Inthisstudy,weadvocateahybridcoolingsystemusingnaturalventilationandradiationpanelcooling.Itisbasedontheconceptofutilizingbothnaturalventilationandradiationpanelcooling,aimingtointroduceoutdoorairintotheindoorspacesbycrossventilationandtoachievecomfortableindoorthermalconditionsbythepowerofnatureasfaraspossible.

Eventhoughitisimpossibleforahigheroutdoortemperaturetocoolaroombycrossventilation,outdooraircanstillbeintroducedandpassthroughtheupperpartoftheroom,expellingouttheheatandcontaminantsgeneratedindoors.Inthemeantime,withtheaidofaverticalthermalgradient,thelowerpartoftheroomcanbefurthercooledbyradiationcoolingpanelsinstalledinthelowerpartoftheroom.Thisstrategyisexpectedtobeenergy-efficientandtoprovideadequatethermalcomfortintheroom.Inthispaper,theconceptofahybridcoolingsystemisdescribedandthemeasuredresultsforthecaseswhereoutdoorairtemperatureandrelativehumidityare21℃at60%and30℃at70%areshown.

1.Conceptofradiationalcoolingsystemwithcontinuousnaturalcrossventilation

Fig.1isaconceptualdiagramofthesystemsuggestedinthisstudy.Thiscoolingsystemhasaventilationopeningintheupperpartoftheroomtoprovideventilationtotheindoorsbycrossventilationandtodischargeinternalheatgeneratedintheroom.Dehumidifyingradiationpanels

areinstalledinthelowerpartoftheroomtoregulateindoorhumidityandtoprovidecooling.Evenwhenoutdoortemperaturesbecometoohightocooltheindoors,heatandcontaminantsgeneratedwithintheroommaybedischargedbycrossventilationfromtheupperpartoftheroomwithoutsignificantlydisturbingtheoccupiedzone(ortaskzone),andradiationcoolingpanelsinstalledinthelowerpartoftheroomwouldlocallycooltheoccupiedzoneonly.

Thustheproposedsystemdoesnotignorethepossibilityofadjustingtheindoorenvironmentusingnaturalpower,butmaximizesitsusetomaintaintheindoorenvironmentatacomfortablelevelandtosaveenergy.

3.OutlineofCFDanalysis

Analysisofroommodel

Thehybridcoolingsystemmaybeusedinbothresidentialandofficebuildings.Here,thecaseofanofficebuildingisexamined.TheofficesettingisshowninFig.3.Thedepthoftheroomis10.8m.Thewidthoftheanalyzedareaissetathalfofthe3.6mofficemodule(1.8m),tomakeasymmetricalconfiguration.Hybridcoolingismodeledastheoutdoorairflowsintotheroomfromtheupperopeningofthewindow(0.5m×1.8m;Fig.3,left),andisexpelledthroughtheopeningontheotherside(0.5m×1.8m;Fig.3,right),whiletheradiationpanelcoolingisstilloperating.Theradiationpanelssetinfrontofthedesksintheroomserveaspartitioningpanels,andcanbeoperatedbelowthedewpointtemperature.Whereasinthecaseofahybridcoolingsystemcoupledwithunderfloorairconditioning,thecooledairissuppliedbydiffusersfromthefloorandreturnsthroughout-letairgrillsintheceiling.People,lighting,personalcomputers,solarheatgains,etctogenerateacoolingload,whichisremovedbynaturalcrossventilation,andradiationcoolingorunderfloorairconditioning.Ahumanmodelisplacedinthecenteroftheroomasthethermalcomfortsensor.

4.Results

4.1.Flowfields

TheflowfieldsforthedifferentcasesareshowninFig.7.InCase1(naturalventilation-radiationpanelcooling),owingtotheconsiderabletemperaturedifferencesbetweentheindoorair(26.6◦C)andoutdoorair(21◦C),thenegativebuoyancyeffectontheinflowingairisapparent.Theinflowingairflowsdownwardstothewindowside,andmixeswiththeindoorairinthelowerpartoftheroom.Thoughnotshownhere,theaircooledbytheradiationpanelsflowsdowntothefloor.

InCase2(naturalventilation-underflowAC),theinflowingairshowsthesametendencyasinCase1.However,thisairmixeswiththeunderfloorACandascendstowardtheupperpartoftheroom.Owingtotheverticaltemperaturedifferenceintheroom,aclockwisecirculatingcurrentisgeneratedontheinnersideoftheroom.InCase3,sincethetemperaturedifferencebetweentheindoorandoutdoorair(30◦C),issmall,thenegativebuoyancyeffectoftheinflowingairisnotapparent.Withthetallercoolingpanel,thermalplumesrisingfromthepersonalcomputerscanclearlybeseen(Fig.7(c)).Thisisbecausetheaveragetemperatureinthetaskzonedrops.ButinCase4,owingtotheverticaltemperaturedifference,theoutdoorairdescendstothefloor.

4.2.Temperaturedistributions

ThetemperaturedistributionsforthefourcasesareshowninFig.8.InCase1,theaverageindoortemperatureis26.6◦C,somewhathigherthanforCase2of24.4◦C.However,theverticaltemperaturedifferenceisslightatabout2◦C.InCase2,duetothesomewhatlowvelocity(0.8m/s)oftheunderfloorAC,thetemperaturenearthefloordropstoalmost20◦C.Asaresult,theverticaltemperaturedifferenceintheroomissteepatabout6◦C,especiallyintheinnerzoneoftheroom.Inbothcases,duetothedescendingcurrentsofincomingair,aratherlow-temperatureregionappearsnearthewindow.InCases3,theroomaveragetemperatureis29.5◦C.Therearevertical

temperaturegradientsintheroom,andahigh-temperatureregionisseenintheupperzoneoftheroombecausetheincomingoutdoorairstaysthere.InCase4,thetemperaturedistributionissimilartothatforCase2,butthetemperaturestratificationbecomescomparativelyclear.ComparedwiththeresultsforCase3,thehigh-temperaturezone(over30◦C)disappearsbecausethehotairiscooledbytheunderfloorairconditioning.

4.3.Relativehumiditydistribution

OnlytherelativehumiditydistributionforCase3isshowninFig.9.InCase1,sincetheradiationpanelsurfacetemperature(19.7◦C)ishigherthanthedewpointtemperature,nocondensationoccurs.Therelativehumidityintheroomairisabout45%overthewholespaceandindicatesarelativelyuniformdistributioncomparedtoCase2.InCase2,theaveragerelativehumidityisabout50%.

Aswiththetemperaturedistribution,asharphumiditystratificationisformed.InCase3,thesurfacetemperatureoftheradiationcoolingpanel(18.3◦C)islowerthanthedewpointtemperature,andcondensationoccursonthesurfaceoftheradiationpanel.Evenafterintroducinghigh-humidityoutdoorair,theaveragerelativehumidityintheroomreachesabout61%becausetheradiationcoolingpaneldehumidifiesthehumidoutdoorair.ComparedwiththeresultsforCase3,theaveragerelativehumidityinCase4(55%)dropsbecauseitiscontrolledbytheunderfloorairconditioning.

4.4.Ageofair(Fig.10)

Theageofthefreshoutdoorairiscalculatedbasedontheresultingflowfields.Thecalculationresultsarenon-dimensionalizedbythenominaltimeconstant.InCases1and2,tnis360s,andinCases3and4itis1200s.InCase1,youngairisobservedinthelowerpartoftheroombecausethefreshoutdoorairmovesintothebottomoftheroom.InCase2,thesametendencyisobservedneartheperimeterzonewithCase1.However,somewhatyoungerairisdistributedoverthewholespace,becausetheoutdoorairmixeswellwiththeindoorairduetotheaircurrentfromtheunderfloorAC.Inbothcases,theairintheinnerpartoftheroombecomesold,owingtothefreshoutdoorairmixingwiththeindoorair.

InCase3,duetotheoutdoorairflowintheu

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1