无机二氧化钛.docx

上传人:b****6 文档编号:6118453 上传时间:2023-01-03 格式:DOCX 页数:11 大小:154.81KB
下载 相关 举报
无机二氧化钛.docx_第1页
第1页 / 共11页
无机二氧化钛.docx_第2页
第2页 / 共11页
无机二氧化钛.docx_第3页
第3页 / 共11页
无机二氧化钛.docx_第4页
第4页 / 共11页
无机二氧化钛.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

无机二氧化钛.docx

《无机二氧化钛.docx》由会员分享,可在线阅读,更多相关《无机二氧化钛.docx(11页珍藏版)》请在冰豆网上搜索。

无机二氧化钛.docx

无机二氧化钛

金属氧化物无机材料的合成、表征和性能研究

第一章引言

1.1.1纳米TiO2的概述

纳米TiO2是一种重要的半导体材料,具有光化学性质稳定、催化效率高、氧化能力强、无毒无害、价格便宜、无二次污染等优点。

纳米TiO2作为光催化剂,在有机污染物的光催化降解中显示广阔的应用前景。

污染物可归为3大类:

(1)有机污染物;

(2)无机污染物;(3)有害金属离子和有害的氮氧化合物。

这些污染物的无害化处理,成为环境保护的研究课题。

自从1972年,A.Fujishima等发现受辐射的TiO2表面能发生对水的持续氧化、还原反应以来,以纳米TiO2为代表的半导体光催化在环境污染治理中的应用,引起了人们的普遍关注。

与传统的污染处理措施比较,光催化法的优点是可将污染物彻底氧化分解为CO2和H2O等无毒物质。

Mattthews等人曾对30多种有机物的光催化分解进行了研究,发现光催化法可将烃类、卤化物、羧酸、染料、表面活性剂、含氮有机物、有机农药等完全氧化为CO2和H2O等无毒物质。

目前,利用光催化来治理环境污染已成为国内外的研究热点。

由于表面效应,纳米材料对金属离子具有很强的吸附能力和较大的吸附容量,是一种有着巨大应用前景的吸附材料。

早在八十年代初,日本的Hada等人就报道了纳米ZnO、TiO2对Ag+的吸附。

Vassileva等在1996年研究了纳米TiO2作为固相萃取吸附剂对重金属离子的吸附性能,结果表明:

锐钛矿TiO2具有高吸附容量、多元素同时吸附、能有效地吸附及良好的重现性能。

据文献报道,纳米

TiO2对As(Ⅲ),As(Ⅴ),Cd(Ⅱ),Ga,In,Tl等具有良好的吸附性能,在最佳pH条件下,这些金属离子能够定量、快速地TiO2对Cu(II)的吸附活性研究国内尚未见文献报道。

1.1.2纳米TiO2的特点

TiO2主要有锐钛矿(Anatase)、金红石(Rutile)和板钛矿型(Brookite)三种晶型,其中金红石矿分布最广,板钛矿属于正交晶系很不稳定,金红石相对于锐钛矿和板钛矿应用较广,三种晶体主要物性如下表示。

TiO2结构

相对密度

晶系

晶格常数/nm

Abc

禁带宽度/ev

锐钛矿相

3.84

四方

0.536

*

0.953

3.2

金红石

4.26

四方

0.459

*

0.296

3.0

板钛矿

4.17

斜方

0.915

0.544

0.514

*

其中锐钛矿和金红石的晶体结构中,Ti4+离子位于相邻的六个O32+。

离子形成的八面体中,两者的差别主要在于八面体结构之间的结合方式不同,图1.1是两种结构的结构示意图。

,钛矿在常温下较为稳定,高温时向金红石相转变,这属于不可逆转变。

 

 

第二章实验部分

2.1纳米TiO2材料的制备

2.1.1低温水热合成法

1)准备两个干燥的250ml烧杯。

在一个烧杯中加入100ml无水乙醇和10ml钛酸四丁脂,搅拌使其混合均匀。

另取250ml烧杯,加入100ml水,HNO3调节PH值=1,加热到70°C,不断搅拌将两种溶液充分混合。

可观察到钛酸四丁脂分解,产生白色凝胶,在70°C干燥箱中静置0.5h。

2)将沉淀离心分离。

沉淀用去离子水充分洗涤后,置于干燥箱中干燥。

干燥后的粉末收集于样品袋中,留作下面的实验。

2.1.2结果分析与讨论

水热合成法由于是在相对较高的温度下进行,通常可直接得到晶化产物。

水热温度、水热反应时间和水醇比是影响产物TiO2结构的重要参数。

采用水热合成法易造成局部浓度过高,颗粒大小、形状不均、分散性差,在干燥过程中TiO2易团聚,影响产品的使用效果和应用范围。

2.2纳米TiO2材料的热力学性质的研究

2.2.1热分析方法

物质在加热或冷却过程中可能发生诸如状态变化、晶型转变、异构化、水合物脱水、热分解、氧化还原反应等物理或化学变化。

热分析就是通过测量物质的这些变化达到对物质的定性、定量表征。

2.2.2实验步骤

1)取少量自制TiO2粉置于特制的坩锅内,按照一定升温速度升温(10℃/min.),测定到TiO2粉的DTA曲线。

对热曲线结果进行分析,判断TiO2从无定形到锐钛矿相,从锐钛矿相到金红石相的相转变温度。

2)根据热分析曲线的分析结果,确定TiO2的烧结温度。

3)纳米TiO2的热处理在微波马弗炉中进行,程序升温控制升温速度,禁止从室温一步升至所需烧结温度。

保温时间:

0.5h。

2.2.3结果与讨论

根据上图中重量损失曲线,可知TiO2样品在加热过程中,有机杂质分解,导致样品质量不断减少,根据DTA对温度的曲线,在253°C和460.1°C处有峰,可知在253°C是有机杂质分解出的峰,在460.1°C矿是无定形TiO2开始转变为锐钛矿,金红石的转变温度在800°C

所以本实验制备锐钛矿设置的温度是500度,制备板钛矿(即锐钛矿和金红石的混合)的温度是650度,在此温度锐钛矿没有完全转化为金红石,制备金红石设置的温度是800度。

2.3纳米TiO2对水中Cu2+的吸附活性研究

2.3.1实验方法

1)Cu2+标准溶液配制

准确量取10mL125μg/mLCu2+标准溶液,配置成50mL溶液。

2)分别准确移取1,2,4,6,8mLCu标准溶液入125mL分液漏斗中,加水至50mL,加入50mLNH3-NH4Cl缓冲溶液,摇匀。

加入5mL铜试剂,摇匀,静置5min.加入10mLCCl4振荡2min.,静置分层,用滤纸吸去下端管口水分,塞入脱脂棉,弃去前1-2mL,以CCl4为参比,在440nm波长测定溶液的吸光度值。

3)纳米TiO2颗粒的预处理

将制的纳米TiO2颗粒浸泡于5mol/LHNO3溶液中30min,然后用二次蒸馏水洗至中性,抽滤后于100°C下烘干。

4)在25ml比色管中加入25ug/ml的Cu2+溶液20ml,NH3调节PH值为9.0,定容至25ml。

加入20.0mg纳米TiO2,搅拌10min,静置10min后离心分离。

移取上层清液(A)待测,沉积物充分洗涤后,准确移取1mol/LHNO330ml,超声15min,静置后离心分离,移取上层清液(B)。

参比步骤

(2)测定溶液A和B的吸光度,根据工作曲线,确定溶液A和B中Cu2+的浓度。

2.3.2结果与讨论

序号

浓度ug/ml

吸光度A

吸光度△A

0

 

0.041

 

1

2.36

0.063

0.022

2

4.72

0.071

0.03

3

9.17

0.083

0.042

4

13.51

0.095

0.054

5

17.7

0.106

0.065

实验前:

浓度ug/ml

A

4.5

B

14.5

 

洗脱后

吸光度A

吸光度△A

A

0.066

0.025

B

0.086

0.045

 

洗脱后:

A的浓度(0.025-0.016)/0.002=4.5ug/ml

B的浓度(0.045-0.016)/0.002=14.5ug/ml

Cu2+在纳米TiO2表面的吸附率:

(20-4.5)/20*100%=74.55%

纳米TiO2表面Cu2+的洗脱率:

14.5/(20-4.5)*100%=98.03%

纳米TiO2对Cu2+吸附可能的机理:

二氧化钛的等电点是6.2,当PH值高于等电点时,氧化物表面被羟基覆盖而显负电。

因此,带负电的纳米二氧化钛可以吸附带正电的阳离子。

当PH值较小的酸性溶液洗脱时,较大浓度H离子把吸附在纳米二氧化钛表面的阳离子洗脱下来。

Ti-O+OH-OH--Ti-O

OH--Ti-O+Mn+(L)x+1OH--Ti-O-Mn+(L)x+L

2.4TiO2纳米晶体(锐钛矿)对甲基橙的吸附

2.4.1实验方法

1)绘制甲基橙的工作曲线

首先测定甲基橙溶液在200-800nm的紫外-可见吸收光谱,确定可见光区的最大吸收波长490nm。

配制一系列0-15mg/L不同浓度的甲基橙标准溶液,测定其吸光度,绘制工作曲线。

2)纳米TiO2(锐钛矿)对甲基橙的吸附实验

量取100mL15mg/L的甲基橙溶液于100mL带塞子的锥形瓶中,称取TiO2晶体0.01g,加入锥形瓶中,磁力搅拌10min,使混合均匀。

每隔20min,取上层清液,离心分离后测定其吸光度值,直至吸光度不再发生变化,达到吸附平衡。

3)TiO2的吸附量由Q=△C*V/m计算,△C是初始浓度与平衡浓度之差,V是溶液的体积,m是催化剂的质量。

2.4.2结果与讨论

甲基橙标准曲线

浓度C(mg/L)

吸光度A

3

0.202

6

0.433

9

0.657

12

0.877

15

1.104

 

 

起始A0

20minA1

40minA2

60minA3

80minA4

100minA5

金红石

1.104

1.068

1.028

0.994

0.986

0.986

吸光度随时间变化曲线

称取:

锐钛矿

质量/g

0.0101

吸光度A

0.986

平衡浓度:

C1=(0.986+0.019)/0.074=13.581mg/L

Q=△C*V/m=(15.00-13.581)/1000*0.1/0.0101=0.014

即:

1g锐钛矿能吸附0.014g甲基橙。

2.5TiO2纳米晶体(金红石)对甲基橙的吸附(自主设计)

2.5.1实验方法

1)同上,绘制甲基橙标准曲线。

2)纳米TiO2(金红石)对甲基橙的吸附实验

量取100mL15mg/L的甲基橙溶液于100mL带塞子的锥形瓶中,称取TiO2晶体0.01g,加入锥形瓶中,磁力搅拌10min,使混合均匀。

每隔20min,取上层清液,离心分离后测定其吸光度值,直至吸光度不再发生变化,达到吸附平衡。

3)计算吸附量

TiO2的吸附量由Q=△C*V/m计算,△C是初始浓度与平衡浓度之差,V是溶液的体积,m是催化剂的质量

2.5.2结果与讨论

 

起始A0

20minA1

40minA2

60minA3

80minA4

100minA5

锐钛矿

1.104

1.078

1.044

1.028

1.023

1.023

吸光度随时间变化曲线

称取:

金红石

质量g

0.0108

吸光度A

1.023

 

平衡浓度:

C2=(1.023+0.019)/0.074=14.081mg/L

Q=△C*V/m=(15.00-14.081)/1000*0.1/0.0101=0.009

即:

1g金红石能吸附0.009g甲基橙。

锐钛矿和金红石都是纳米TiO2,具有很大的表面积和复杂的空隙结构,而吸附过程正是在这些孔隙中和表面上进行的,从而使其能够吸附杂质。

象磁力一样,所有的分子之间都具有相互引力。

纳米TiO2孔壁上的大量的分子可以产生强大的引力,从而达到将介质中的杂质吸引到孔径中的目的,这就是物理吸附。

锐钛矿与金红石相比,金红石的晶格较小,致密度高,所以具有更大的稳定性和较高的密度,比表面积比锐钛矿小,所以吸附量比锐钛矿小。

2.6TiO2纳米晶体对甲基橙的光催化降解

2.6.1实验方法

分别称取三种TiO2纳米晶体0.1g,超声分散于100ml甲基橙水溶液中,反应温度为室温,光源为高压汞灯,功率为100W,垂直照射在反应液上,光源与溶液的垂直距离为20cm。

磁力搅拌器保证溶液浓度的均匀性。

每隔20分钟取少量溶液,离心分离后,取清液用紫外可见分光光度计(TU-1900)测定其吸收光谱,扫描范围从400-700nm。

根据最大吸收峰的吸光度值变化确定甲基橙的浓度变化。

以甲基橙降解率(A0-A)/A0(A0起始甲基橙的吸光度,A为t时刻甲基橙的吸光度)为纵坐标,时间为横坐标,比较三种TiO2纳米晶的光催化活性。

2.6.2结果与讨论

1)0.01g锐钛矿

 

起始A0

20minA1

40minA2

60minA3

80minA4

100minA5

锐钛矿

1.031

0.891

0.873

0.871

0.871

0.871

甲基橙降解率:

(A0-A)/A0=(1.031-0.871)/1.031=0.916

2)0.01g金红石

 

起始A0

20minA1

40minA2

60minA3

80minA4

100minA5

金红石

1.031

0.296

0.289

0.287

0.285

0.285

吸光度随时间变化曲线

甲基橙降解率:

(A0-A)/A0=(1.031-0.285)/1.031=0.724

3)0.08g锐钛矿+0.02g金红石

 

起始A0

20minA1

40minA2

60minA3

80minA4

100minA5

混合两种

1.031

0.047

0.045

0.045

0.045

 0.045

吸光度随时间变化曲线

甲基橙降解率:

(A0-A)/A0=(1.031-0.045)/1.031=0.956

应用能带模型可以很好的解释TiO2的光催化机理。

锐钛矿TiO2的能带宽度为

3.2eV,在波长<400nm的紫外光照射下,产生电子-空穴对:

TiO2TiO2(e-+h+)

光生空穴(h+)即可直接与粒子表面吸附的有机分子(RX)反应,电子从有机分子转移给TiO2粒子:

TiO2(h+)+RXTiO2+RX+

h+还可接受表面吸附的溶剂分子提供的电子,发生如下的氧化反应:

TiO2(h+)+H2OTiO2+HO.+H+

由于TiO2粒子表面吸附的H2O分子和OH-的浓度较高,所以第二种氧化过程在有机物的光催化降解过程中起了重要作用。

同时表明,O2分子在TiO2的光催化过程中是一种必不可少的物质,它主要用来接受导带的光电子,产生超氧离子。

超氧离子不稳定,发生歧化反应,生成过氧化氢。

H2O2还可以接受TiO2导带的光生电子产生氢氧自由基(OH):

氢氧自由基可将吸附在TiO2颗粒表面的大多数的有既无氧化分解为CO2和H2O等无机物。

金红石由于对02的吸收能力较差,比表面积较小,所以导致光生电子和空穴容易复合,光催化活性较锐钛矿的低,但研究发现具有高光催化活性的多数为锐钛矿与金红石的混合物,这是由于此时锐钛矿表面形成了金红石薄层,这种包覆型复合结构能有效地提高电子.空穴对的分离效率,这种现象也被称之为“混晶效应”。

第三章总结与展望

本实验采用低温水合法制备纳米TiO2,高温转化为锐钛矿和金红石,研究它们对金属离子、有机物的吸附,和光催化降解能力。

TiO2作为新兴材料,无论是用来降解有机物污染物,还是用着吸附材料,都有着广泛的应用前景。

作为本实验的拓展,研究纳米TiO2对不用金属离子的吸附能力的比较,以及锐钛矿和金红石两种纳米TiO2混合催化降解能力可以再做实验,使自己对纳米TiO2有更深入的了解。

(注:

可编辑下载,若有不当之处,请指正,谢谢!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1