最新山东大学数学学院数学实验作业题.docx

上传人:b****5 文档编号:6113013 上传时间:2023-01-03 格式:DOCX 页数:52 大小:366.21KB
下载 相关 举报
最新山东大学数学学院数学实验作业题.docx_第1页
第1页 / 共52页
最新山东大学数学学院数学实验作业题.docx_第2页
第2页 / 共52页
最新山东大学数学学院数学实验作业题.docx_第3页
第3页 / 共52页
最新山东大学数学学院数学实验作业题.docx_第4页
第4页 / 共52页
最新山东大学数学学院数学实验作业题.docx_第5页
第5页 / 共52页
点击查看更多>>
下载资源
资源描述

最新山东大学数学学院数学实验作业题.docx

《最新山东大学数学学院数学实验作业题.docx》由会员分享,可在线阅读,更多相关《最新山东大学数学学院数学实验作业题.docx(52页珍藏版)》请在冰豆网上搜索。

最新山东大学数学学院数学实验作业题.docx

最新山东大学数学学院数学实验作业题

 

数学实验

成员签名:

曹云20070901005

李宪锋20070901061

李晓翾20070901062

施尚20070901110

 

实验二教堂顶部曲面面积的计算方法

实验题目:

教堂顶部曲面面积的计算方法

实验目的:

本试验主要涉及微积分,通过试验将复习曲面面积的计算、重积分和Taylor展开等知识;另外将介绍重积分的数值计算法和取得函数近似解析表达式的摄动方法。

实验内容:

思考下面这个实际问题并借助数学软件完成后面4个题的解答:

某个阿拉伯国家有一座著名的伊斯兰教堂,它以中央大厅的金色巨大拱形圆顶名震遐迩。

因年久失修,国王下令将教堂顶部重新贴金箔装饰。

据档案记载,大厅的顶部形状为球面,其半径为30m。

考虑到可能的损耗和其他技术因素,实际用量将会比教堂顶部面积多1.5%.据此,国王的财政大臣拨出了可制造5750m有规定厚度金箔的黄金。

建筑商人哈桑略通数学,他计算了一下,觉得黄金会有盈余。

于是,他以较低的承包价得到了这项装饰

工程,但在施工前的测量中,工程师发现教堂顶部实际上并非是一个精确的半球面而是半椭圆球面,其半立轴恰是30m,而半长轴和半短轴分别是30.6m和29.6m。

这一来哈桑犯了愁,他担心黄金是否还有盈余?

甚至可能短缺。

最后的结果究竟如何呢?

1.用近似格式(2.10)计算教堂顶部面积,与用格式(2.8)计算的结果

相比较;

2.试用数学软件直接计算面积(2.3);

3.在俄国沙皇的宫廷宝藏中,有许多复活节蛋,它们大都以金银制作,装

饰着或者内藏着各种钻石。

其中有一中较大的金“蛋”,“蛋”壳的外层表面是一

个椭球面,其半长轴、半短轴和半立轴分别为8cm、5.2m和5cm。

“蛋”壳的

厚度为0.24cm,重量是1680g。

用所学的知识解决这只复活节蛋的壳是否用纯金制作的。

(金的密度是19.2g/cm)

4.建筑商人哈桑在对另一座伊斯兰建筑物顶部表面进行装饰时,他碰到的

是一个类似半球面、然而又具有一些其他变化规律的曲面,哈桑这次仍要对

该建筑物的顶部贴以金箔,我们可以确切地用球坐标表示该曲面方程,为

 

其中R=30(m),(请考虑一下,这是怎样地一个曲面?

)如果由技术和损耗的因素将使用料比实际面积多1.6%,那么装饰这个顶部至少需要多少金箔?

试用数值方法和摄动方法分别求解这个问题,并将两种方法的结果比较。

(注意:

这里给出的曲面方程是参数形式的,因此首先需要弄清这种情况下曲面的计算式有什么变化。

 

采用方法:

1.取椭圆中心为坐标原点建立直角坐标系,则教堂顶部半椭圆球面的方程可写为:

 

其中R=30,a=30.6,b=29.6,而其表面积为

这里积分区域D为

 

通过简单的计算容易得到

 

引进变量代换

则有

这个积分相当复杂,不过关于变量r还是可以积出初等函数的表达式,有兴趣的读者可以试一试,若记

 

那么(2.3)中关于r的积分

 

这里µ=1的情况要对表达式求极限。

注意到µ的表达式(2.4),若将式(2.5)带入式(2.3)得到的是一个极为复杂的积分式。

事实上,这是一个无法以初等函数形式来表达的积分,因此我们必须使用近似方法来处理它。

考虑到这一积分形式相当复杂,我们宁可直接对式(2.3)来进行处理。

 

2.数值积分方法:

对于二重积分,可以如同一元函数定积分那样,将区域划分为小块,然后在每个小区域上对被积函数作近似简化求积,再把所得的值求和即可。

3.摄动方法:

简单地说,摄动方法就是对解析式中的小参数进行展开,从而求得近似解析解的方法,应用于积分计算,常常是采取将被积函数(或其部分)展开的方法。

使用的主要程序:

程序1:

m=18;

a=8.0-0.14;

b=5.2-0.14;

R=5.0-0.14;

h=1/(2*m);

k=2*pi/(2*m);

e=0:

k:

2*pi;

t=(0:

h:

1)';

%算式(2.13)

f=sqrt(t.^2*ones(size(t))'+R^2*(1-t.^2)*((cos(e)/a).^2+(sin(e)/b).^2));

clearIij;

forj=2:

2:

2*m

fori=2:

2:

2*m

%算式(2.10)

Iij(i,j)=k*h/9*(f(i-1,j-1)+f(i+1,j-1)+f(i-1,j+1)+f(i+1,j+1)...

+4*(f(i,j-1)+f(i-1,j)+f(i+1,j)+f(i,j+1))...

+16*f(i,j));

end

end

I=sum(sum(Iij));

S=2*a*b*I;

L=0.24*S;

sprintf('不是。

纯金蛋应重%7.2f克,该蛋壳密度为%5.2f(g/cm3)。

\n',19.2*L,1680/L)

 

程序2:

m=15;

R=30;

k=pi/6/(2*m);

h=pi/2/(2*m);

u=0:

k:

pi/6;

v=(0:

h:

pi/2)';

forj=1:

2*m+1

fori=1:

2*m+1

f(i,j)=sqrt(1/100*R^2*sin(v(j))^2*(101+20*sin(6*u(i))+35*cos(6*u(i))^2)...

*(1/100*R^2*cos(v(j))^2+1/5*R^2*cos(v(j))^2*sin(6*u(i))...

-1/100*R^2*cos(v(j))^2*cos(6*u(i))^2+R^2)...

-9/2500*sin(v(j))^2*R^4*cos(v(j))^2*cos(6*u(i))^2*(10+sin(6*u(i)))^2);

end

end

clearIij;

forj=2:

2:

2*m

fori=2:

2:

2*m

%算式(2.10)

Iij(i,j)=k*h/9*(f(i-1,j-1)+f(i+1,j-1)+f(i-1,j+1)+f(i+1,j+1)...

+4*(f(i,j-1)+f(i-1,j)+f(i+1,j)+f(i,j+1))...

+16*f(i,j));

end

end

I=sum(sum(Iij));

S=12*I;

ans=sprintf('表面积%7.2f(m2),需金箔%7.2f(m2)\n',S,(1+0.016)*S)

text(-50,-70,1,ans)

 

实验结果:

1.近似格式2.8计算的结果:

m

S

m

S

2

5621.42

16

5679.83

4

5679.78

24

5679.82

6

5679.89

44

5679.81

10

5679.89

100

5679.81

.

近似格式2.10计算的结果:

m

S

m

S

2

5700.54

16

5679.81

4

5679.88

24

5679.81

6

5679.81

44

5679.81

10

5679.81

100

5679.81

 

2.用数学软件直接计算面积2.3得:

S=5679.82

3.由算式2.10(见程序1)计算得:

不是。

纯金蛋应重2004.25克,该蛋壳密度为16.09(g/cm3)。

4.由程序2计算得:

表面积为6454.59(m2),需要金箔6557.87(m2)

 

实验三导弹跟踪问题

实验目的:

本实验主要涉及常微分方程的建模和求解;介绍两种微分方程的数值方法:

Euler法和改进的Euler法;还介绍了仿真方法。

实验内容:

1.应用数学软件或编制计算程序对问题(3.12)~(3.14)进行数值计算,先运用Euler法,与表3.2以及表3.3的数据比较,并以更小的步长计算结果;再用改进的Euler法计算(步长与Euler法相同)。

2.在本实验介绍的计算过程中,我们是计算到

即停止,然后取

这样做法可能会有不小的误差。

有时甚至会出现整体步长改小而结果却未必能改进的情况。

由于Euler法或改进的Euler法的计算格式中每一步值的取得仅仅依赖上一步的值,因此在计算过程中改变步长是可行的,即当计算到

而y远大于H时,可缩小步长(例如为原来的十分之一)以xy作为新起点继续进行迭代。

试用这种变步长方法来改进在任务1中得到的结果。

3.如果当基地发射导弹的同时,敌艇立即由仪器发觉。

假定敌艇为一高速快艇,它即刻以135km/h的速度与导弹方向垂直的方向逃逸,问导弹何时何地击中快艇?

试建立数学模型并求解。

采用方法:

主要公式:

数学模型:

解析方法:

导弹轨迹方程:

设导弹击中敌舰于点(L,H):

数值方法:

Euler格式:

为所求

改进的Euler方法:

 

主要程序:

1.

Euler法

h=0.0005;

H=120;Vw=450;Ve=90;

clearxy;

tk=0;

k=1;

%(3.23)

x

(1)=0;y

(1)=0;

whiley(k)

%(3.21)

x(k+1)=x(k)+Vw*h*(Ve*tk-x(k))/sqrt((Ve*tk-x(k))^2+(H-y(k))^2);

%(3.22)

y(k+1)=y(k)+Vw*h/sqrt(1+((Ve*tk-x(k))/(H-y(k)))^2);

k=k+1;tk=tk+h;

end

x

y

sprintf('k=%d,tk=%7.4f\n',k-1,tk)

sprintf('L=%8.4f,T=%8.4f\n',x(k),x(k)/Ve)

改进的Euler法

h=0.0005;

H=120;Vw=450;Ve=90;

clearxy;

tk=0;

k=1;

%(3.28)

x

(1)=0;y

(1)=0;

whiley(k)

tk1=tk+h;

%(3.26)

xk1=x(k)+Vw*h*(Ve*tk-x(k))/sqrt((Ve*tk-x(k))^2+(H-y(k))^2);

%(3.27)

yk1=y(k)+Vw*h/sqrt(1+((Ve*tk-x(k))/(H-y(k)))^2);

%(3.24)

x(k+1)=0.5*(xk1+x(k)+Vw*h/sqrt(1+((H-yk1)/(Ve*tk1-xk1))^2));

%(3.25)

y(k+1)=0.5*(yk1+y(k)+Vw*h/sqrt(1+((Ve*tk1-xk1)/(H-yk1))^2));

tk=tk+h;k=k+1;

end

x

y

sprintf('k=%d,tk=%7.4f\n',k-1,tk)

sprintf('L=%8.4f,T=%8.4f\n',x(k),x(k)/Ve)

2.

h=0.01;

H=120;Vw=450;Ve=90;

clearxy;

tk=0;

k=1;

%(3.28)

x

(1)=0;y

(1)=0;

whileh>0.00001

ify(k)>H

tk=tk-h;tk1=tk-h;k=k-1;h=h/10;

end

tk1=tk+h;

%(3.26)

xk1=x(k)+Vw*h*(Ve*tk-x(k))/sqrt((Ve*tk-x(k))^2+(H-y(k))^2);

%(3.27)

yk1=y(k)+Vw*h/sqrt(1+((Ve*tk-x(k))/(H-y(k)))^2);

%(3.24)

x(k+1)=0.5*(xk1+x(k)+Vw*h/sqrt(1+((H-yk1)/(Ve*tk1-xk1))^2));

%(3.25)

y(k+1)=0.5*(yk1+y(k)+Vw*h/sqrt(1+((Ve*tk1-xk1)/(H-yk1))^2));

tk=tk+h;k=k+1;

end

sprintf('k=%d,tk=%7.4f\n',k-1,tk)

sprintf('L=%8.4f,T=%8.4f\n',x(k),x(k)/Ve)

3.

h=0.0005;

H=120;Vw=450;Ve=135;

clf

axis([-535-10130])

holdon

title('µÐ½¢Óëµ¼µ¯´¹Ö±ÌÓÒÝ')

plot(0,H,'bo')

plot(0,0,'r.')

pause

clearXwYwXeYe;

tk=0;s=0;

k=1;

Xw

(1)=0;Yw

(1)=0;

Xe

(1)=0;Ye

(1)=H;

while(Xw(k)-Xe(k))^2+(Yw(k)-Ye(k))^2>0.4

Xw(k+1)=Xw(k)+Vw*h*(Xe(k)-Xw(k))/sqrt((Xe(k)-Xw(k))^2+(Ye(k)-Yw(k))^2);

Yw(k+1)=Yw(k)+Vw*h/sqrt(1+((Xe(k)-Xw(k))/(Ye(k)-Yw(k)))^2);

Xe(k+1)=Xe(k)+Ve*h/sqrt(1+((Xe(k)-Xw(k))/(Ye(k)-Yw(k)))^2);

Ye(k+1)=Ye(k)-Ve*h*(Xe(k)-Xw(k))/sqrt((Xe(k)-Xw(k))^2+(Ye(k)-Yw(k))^2);

s=s+sqrt((Xe(k+1)-Xe(k))^2+(Ye(k+1)-Ye(k))^2);

Wx

(1)=Xw(k);

Wx

(2)=Xw(k+1);

Wy

(1)=Yw(k);

Wy

(2)=Yw(k+1);

Ex

(1)=Xe(k);

Ex

(2)=Xe(k+1);

Ey

(1)=Ye(k);

Ey

(2)=Ye(k+1);

plot(Xe(k),Ye(k),'wo')

plot(Xw(k),Yw(k),'w.')

plot(Xe(k+1),Ye(k+1),'bo')

plot(Xw(k+1),Yw(k+1),'r.')

plot(Ex,Ey,'b')

forrp=0:

10

plot(Wx,Wy,'y')

plot(Wx,Wy,'w')

plot(Wx,Wy,'r')

end

k=k+1;tk=tk+h;

end

plot(Xe(k),Ye(k),'ro')

plot(Xe(k),Ye(k),'y*')

text(Xe(k)-1,Ye(k)-8,'ßÑ!

!

')

sprintf('k=%d,tk=%7.4f\n',k-1,tk)

ans=sprintf('X=%8.4f,Y=%8.4f,T=%8.4f\n',Xe(k),Ye(k),s/Ve)

text(10,10,ans)

holdoff

pause

close

clearall

实验结果:

1.用Euler法:

当令

时,L=25.0763,T=0.2786。

用改进的Euler法:

当令

时,L=25.0608,T=0.2785。

用更小的步长,所得结果更接近解析方法的结果。

2.所得结果为:

L=24.9563,T=0.2773

3.敌舰被击中的位置为(33.0906,110.2464)

 

实验六:

个人住房抵押贷款和其他金融问题

 

实验题目:

个人住房抵押贷款和其他金融问题

实验目的:

本实验涉及微积分和线性代数,通过实验复习数列,函数方程求根和与线性代数方程组有关的某些知识:

主要是介绍与经济生活中某些常见重要问题有关的离散形式数学模型--差分方程。

实验内容:

1、实际问题:

1998年12月,中国人民银行公布了新的存,贷款利率水平,其中贷款利率如表1,表2和表3分别列出了上海商业银行报章公布的个人住房商业抵押贷款年利率和上海商业银行提供的个人住房商业性抵押贷款(万元)还款额的部分数据。

表1

贷款期限

半年

1年

3年

5年

5年以上

利率%

6.12

6.39

6.66

7.20

7.56

表2

贷款期限

1年

2年

3年

4年

5年

利率

6.120

6.255

6.390

6.525

6.660

 

表3

贷款期

1

2

3

4

5

12

24

36

48

60

月还款期

到期一次还本付息

444.356

305.9896

237.2649

196.4118

本息总额

10612.00

10664.54

11015.63

11388.71

11784.71

2、数学模型:

以商业贷款1000元为例,一年期贷款年利率为6.12%,到期一次还本付息总计10612.00元,二年期贷款的年利率为6.255%,月还款数444.3560元恰为本息总额10664.54元的1/24,这是怎么产生的呢?

设贷款后第k个月是欠款余数位阿Ak元,月还款为m元,则由Ak变化到Ak+1,有还款数和利息因素,月利率设为r,从而得到

Ak+1=(1+k)Ak-m,k=0,1,2……

(1)

开始的贷款数A0=10000

(2)

成为数学模型。

月利率采用将年利率R=0.06255平均,即r=0.06255/12=0.0052125(3)

(1)称为差分方程。

3、问题的解法与讨论:

a.月还款额

二年期贷款满足A24=0(4)

令Bk=Ak-Ak-1(5)

(1)得Bk+1=(1+r)Bk于是得Bk=B1(1+r)k-1,k=1,2……(6)

Ak-A0=B1+B2+……Bk

=B1[1+(1+r)+……+(1+r)k-1]

=(A1-A0)[[(1+r)k-1]/r]

=[(1+r)A0-m-A0][[(1+r)k-1]/r]

从而得到差分方程的解:

Ak=A0(1+r)-m/r[(1+r)k-1],k=0,1,2,……(7)

将Ak,A0,r,k=24的值代入得,m=444.3560(元)。

b.还款周期

如果按月还款的话,显然要比按年付款的钱少。

考虑到人们的收入一般均以月薪方式获得,因此逐月归还法对于贷款这是合适的。

若改为逐年归还方法,情况如何呢?

以二年为例,则(7)中的r代为R=0.06255,k=2,A0=10000,得到m~=5473.8673(元)。

本息总额为2m~=10947.73(元)。

c.平衡点

若令Ak+1=Ak=A,可解得A=m/r称之为差分方程

(1)的平衡点。

当A0=m/r时,衡有Ak=m/r,k=0,1,2,……,则每月还款额恰抵上利息,则所欠额保持不变。

当A0稍大于或小于m/r时,Ak随着k的增大越来越远离m/r,这种平衡点称为不稳定的。

对一般的差分方程Ak+1=f(Ak),k=0,1,2,……(9)

当初始值稍大于或小于差分方程的平衡点A时,若Ak→A,(当k→∞)则称A为稳定的,否则,称A为不稳定的。

4.其他问题

a.养老保险

数学模型:

养老保险是与人们生活密切相关的一种保险类型。

通常保险公司会提供多种方式的养老金计划让投保人选择,在计划中详细列出保险费和养老金的数额。

例如某保险公司的一份材料指出:

在每月交费200元至60岁开始领养老金的约定下,男子若25岁起投保,届时月养老金2282元,若35岁起投保,月养老金1056元;若45岁起投保,月养老金420元。

我们来考虑这三种情况所交保险费获得的利率。

Fk+1=Fk(1+r)+p,k=0,1,2……,N(11)

Fk+1=Fk(1+r)-q,k=N+1,N+2,……M(12)

其中p,q分别是60岁前所交的月保险费和60岁起所领月养老金数目,r是交保险金获得利率,N,M分别是自投保起至停交保险费和至停交养老金的时间。

射手名平均值75岁。

以25岁起投保为例,则有p=200,q=2282;N=420,M=600。

不难得到

Fk=F0(1+r)k+p/r[(1+r)k-1],k=0,1,2……N(13)

Fk=FN(1+r)k-N-q/r[(1+r)k-N-1],k=N+1,N+2,……M(14)

(13)中k=N,(14)中k=M

且FM=0。

则得关于r方程

(1+r)M-(1+q/p)(1+r)M-N+q/p=0

记x=1+r,代入数据解出根x=1.00485,r=0.00485。

对于35岁和45岁起投保情况,得月利率分别为0.00461和0.00413。

b.金融公司的支付基金的流动

某金融机构为保证现金充分支付,设立一笔总额$540万元的基金,分开放置在位于A城和B城的两公司。

发现每过一周,A城公司有10%支付基金流动到B公司,B公司则有12%支付基金流动到A城公司。

此时,A城公司基金额为$260万,B城公司基金额$280万。

按此规律,两公司支付基金数额变化趋势如何?

设此后第k周结算时,A和B基金数分别是ak和bk(万元),则有

ak+1=0.9ak+0.12bk,k=0,1,2……

bk+1=0.1ak+0.88bk,k=0,1,2……(17)

a0=260,b0=280(18)

迭代可求得各周末时ak和bk的数值。

表(4)给出1至12周末两公司基金数(单位:

万美元):

表(4)

k

ak

bk

k

ak

bk

k

ak

bk

1

267.6000

272.4000

5

284.5716

255.4284

9

290.8536

249.1464

2

273.5280

266.4720

6

284.7658

253.2342

10

291.6658

248.3342

3

278.1518

261.8482

7

288.4773

251.5227

11

292.2993

247.7007

4

281.7584

258.2416

8

289v8123

250.1877

12

292.7935

247.2065

由表知,A城公司支付基金数在逐步增加,但增幅逐步减小;

B城公司支付基金数则正好相反,但ak是否有上界,bk是否有下界?

(附程序)

5.问题与讨论(实验任务)

(1)确定表2中二、三、四期贷款利率是如何产生的,推导出相应的一至五年万元贷款的还款额表。

(2)制定一张完整的个人住房商业贷款利率和还款表,贷款

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 生物学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1