统计学案例上市公司年报数据分析.doc

上传人:b****2 文档编号:606784 上传时间:2022-10-11 格式:DOC 页数:20 大小:459.50KB
下载 相关 举报
统计学案例上市公司年报数据分析.doc_第1页
第1页 / 共20页
统计学案例上市公司年报数据分析.doc_第2页
第2页 / 共20页
统计学案例上市公司年报数据分析.doc_第3页
第3页 / 共20页
统计学案例上市公司年报数据分析.doc_第4页
第4页 / 共20页
统计学案例上市公司年报数据分析.doc_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

统计学案例上市公司年报数据分析.doc

《统计学案例上市公司年报数据分析.doc》由会员分享,可在线阅读,更多相关《统计学案例上市公司年报数据分析.doc(20页珍藏版)》请在冰豆网上搜索。

统计学案例上市公司年报数据分析.doc

统计教学案例二

上市公司年报数据分析案例

经统计调查取得数据后,需要通过统计整理、综合指标计算与相关回归分析等方法技术对总体数据进行处理,以认识总体变量分布状态(如正态分布)、特征表现(如结构相对数、平均数和标准差)、相关关系(如相关系数)和变化规律(如回归模型),从而了解事物或现象的本质及其依存因素。

其中统计整理技术包括总量指标、相对指标、平均指标和标志变异指标的揭示,他们的计算既是对总体基本特征的描述,又是对事物或现象进一步定量研究的基础;相关和回归是研究总体各事物或现象间相互关系的定量分析,用以测定不同特征相互联系的紧密程度,揭示变化形式和规律。

本章案例主要通过对总体静态数据处理过程的介绍,帮助读者掌握统计整理、指标描述和相关回归分析技术结合运用的技术与经验。

本章由1个大型案例构成,案例以沪深股市制造业上市公司为对象,系统介绍了静态数据总体的统计处理过程,包括分布描述、分类研究和相关因素分析。

上市公司年报数据分析案例的教学目的:

数据整理是统计分析的基础工作,在总体规模很大,数据量浩瀚、分布未知的情况下,如何对总体数据进行整理分类,描述总体分布及进一步分析总体各特征间的相互关系是对总体正确认识的关键。

由于具体的工作过程与教科书的知识点讲授顺序并不完全一致,因此本案例通过对1999年沪深股市制造业上市公司年报数据分析过程的介绍,给读者以处理总体静态数据的思路和技巧,从而训练读者解决实际问题的能力。

案例的背景分析与数据资料

一、案例的现实意义

上市公司的经营业绩与其股票价格、市场价值息息相关,因此反映上市公司经营业绩的定期公开披露的中期会计报告、年度会计报告就成为社会各界密切关注的重要信息之一。

对所有上市公司的财务报告进行统计整理和分析,把握上市公司整体的经营状况、经营业绩的水平和变化趋势,无论是对投资选择,还是政府的决策与监督,都是不可或缺的。

本案例探讨的就是面对大量的财务报告数据信息如何进行统计整理与分析,这对于投资者、投资咨询人员或是理论界研究者,都具有实际的指导意义。

通过本案例的学习讨论,有助于大家掌握统计描述和相关回归分析的方法,同时积累应用这些方法的实际经验和教训。

二、案例所依托的总体及其现状与研究目的

(一)案例所依托的客体

本案例所依托的客体是1999年上市公司年报中的有关财务指标。

1999年末,沪、深两市共有上市公司949家。

这些上市公司分布在13个行业部门。

根据中国证监会的《上市公司分类指引》中规定的分类方法,其中制造业共有578家,占60.91%。

总股本1938亿元,占62.73%,制造业是上市公司最集中的行业。

截止2000年4月30日,已公布年报的有560家。

所以本案例研究的总体范围确定为如期公布年报的制造业560家上市公司。

(二)案例研究的目的与任务

1.上市公司年报财务数据统计分析的目的

通过对制造业1999年报有关数据进行系统的统计整理、描述和回归分析,揭示1999年制造业上市公司主要财务指标的总体分布、分行业的经营业绩水平和重要特征,从中掌握认识总体分布特征和数量变化的技巧和方法,提高用统计思想和方法解决实际问题的能力。

2.上市公司年报财务数据统计分析的任务

对纷繁的数据进行不同的分类、分组、汇总、综合、分析、归纳、推断,显示上市公司财务报告中的主要财务指标的分布形态和主要特性,寻找财务指标之间的相互关系和表现规律。

3.上市公司年报财务数据统计分析的对象

本案例所引用资料取自《上海证券报》,包括了制造业560家上市公司。

共选有8个财务指标:

总资产、净利润、主营业务收入、股东权益、每股收益、每股净资产和股东权益比率。

其中,前4个为反映资产、收益方面的总量指标,后4个为反映盈利能力、业绩水平的相对指标。

4.数据的初步分析——制造业上市公司行业结构

在制造业中,生产不同产品的企业或公司,具有不同的规模,占有不等的资源要素,他们的总股本、净利润、净资产收益率必然存在很大的差异。

为了深入认识总体,首先要对制造业按其经济活动的特点进行行业分类。

根据《上市公司分类指引》,制造业进一步分为10个行业种类,编码为C0、C1、C2、…、C9。

分类统计属于定名测定。

从上述资料经计数整理后即可得到如表一的分布数列。

表2—1制造业上市公司行业分布

代码

行业分类

上市公司数

比重(%)

C0

食品、饮料

48

8.57

C1

纺织、服装、皮毛

45

8.04

C2

木材、家具

2

0.36

C3

造纸、印刷

16

2.86

C4

石油、化学

130

23.21

C5

橡胶、塑料

10

1.79

C6

金属、非金属

96

17.14

C7

机械、仪表、设备

151

26.96

C8

通讯、电子

51

9.11

C9

其他

11

1.96

合计

560

100.00

这是一个品质标志分组的分布数列。

从该数列中可以知道上市公司的行业结构。

1999年560个制造业上市公司中,27%是机械、仪表、设备制造业(包括汽车、船舶、摩托车、家电等);23%是石化类行业;而冶金、钢铁等金属非金属类公司占17%;通讯电子章9%。

所以,制造业上市公司中传统产业占了较大比重。

这些行业中大部分是国有或国有控股企业,是国企改革中率先建立现代企业制度进入资本市场的排头兵。

行业的分布也体现了国家的产业政策导向,在1999年新发行的A股中,大盘股和高科技股明显增多,有力地支持了国企改革和高科技企业的发展,推动了上市公司的行业结构优化。

方案设计

一、案例设计的思路

本案例研究的总体对象是某一特定时间的静态数据集,为了对它有一个全面和透彻的认识,一般应对其进行基本的特征描述和揭示各特征间主要的相互关系。

根据这一目的,本案例按照如下顺序对数据进行处理:

1.分别对总体个单位的数量标志按值的大小作升序排列,以大概认识个变量的变化范围及其一般水平。

2.分别计算总体个变量的特征值,进一步抽象认识个变量的分布特征,包括算术平均数、众数、方差、峰度度、偏度等。

3.分别根据特征指标绘制各变量的分布图,以形成对各变量分布的直观认识。

4.分别按品质标志和数量标志对总体进行分类,通过计算派生指标,以深入认识总体各指标在不同类别间的差异,包括总体结构、强度,比例关系等。

5.分别对总体各指标进行相关分析,了解各指标间的依存关系,在相关关系成立的基础上进行回归分析,从而更深层次地认识总体的规律与特征。

6.在上述研究分析的基础上给出关于对对象的定性认识结论。

二、案例设计的工作过程

(一)数据整理与描述

1.编制按各财务指标的变量数列

(1)将数据顺序排列。

(2)计算描述统计指标。

在Excel“工具”的“数据分析”中,“描述统计”提供了所分析数据的主要描述指标和有关信息。

其内容是;

平均——算术平均数,即=

标准误差——抽样平均误差,即

中值——中位数,即Me;

模式——众数,即Mo;

标准偏差——标准差,即;

样本方差——方差,即

峰值——峰度,即

偏斜度——偏度,即;

区域——全距,即最大值减最小值;

求和——标志总量;

计数——总体单位总数;

最大(K)——第K个最大值;

最小(K)——第K个最小值;

置信度——“数据分析”中默认概率为95%(也可自行选择)的1/2误差范围。

(3)分析描述统计指标——比较平均数、众数、中位数的大小;偏度系数的大小、方向等。

(4)确定组数和组距——当偏度系数不大时,用斯特吉斯经验公式确定组数;偏度系数较大、分布明显偏态时,以平均数为中心,以K倍标准差为组距。

(5)整理成频数分布和直方图(或其他图形),显示总体分布特征。

2.制造业公司主要财务指标的分布

(1)总资产分布数列和直方图

总资产描述统计1

平均

标准误差

中值

模式

标准差;

样本方差

峰值

偏斜度

区域

最小值

最大值

求和

计数

置信度

(95%)

158315.1

8970.946

95296.9

212291.3

4.51E+10

30.19077

4.705128

2178598

12256.69

2190846

88656452

560

17620.89

总资产描述统计2

平均

标准差

中值

模式

标准差;

样本差

峰值

偏斜度

区域

最小值

最大值

求和

计数

置信度

(95%)

144640.7

6388.948

95410.48

149424.9

2.23E=10

9.916375

2.885238

955269.6

21671.49

976941.1

79118478

547

12549.92

从描述统计1看,560家公司的总资产呈高度偏态。

总资产最大值是上海石化219亿元,最小值是ST黔凯涤1.2亿元,相差近200倍。

将6个总资产100亿和7个2亿元以下的数据作为极值舍去,计算得到描述统计2,此时的标准差和偏度系数都降低了,说明数据间的差异小了。

但仍呈偏态,不能用斯特吉斯经验确定组数。

不论何种分布,均值和方差其分布的两个主要特征值。

根据切比雪夫定理,可以平均数为中心,以K倍的标准差为组距,因为此时平均数K倍的标准差所涵盖的数据范围不小于1-1/。

本例中,均值14.5亿元,中位数9.5亿元,标准差15亿元,说明560家公司的总资产分布为右偏态。

若以1个标准差为组距,则中位数以下部分的描述势必过于概括。

所以考虑用1/2标准差,即7.5亿元为组距,由于100亿元以上只有7家,将105亿元以上并为一组,组数=15。

分组后变量数列及直方图如表二和图一所示。

表2—2560家上市公司总资产分组统计

分组(万元)

频数

频率(%)

75000以下

75000~150000

150000~225000

225000~300000

300000~375000

375000~450000

450000~525000

525000~600000

600000~675000

675000~750000

750000~825000

825000~900000

900000~975000

975000~1050000

1050000以上

209

192

64

33

18

15

4

2

4

6

2

1

3

1

6

37.32

34.29

11.43

5.89

3.21

2.68

0.71

0.36

0.71

1.07

0.36

0.18

0.54

0.18

1.07

合计

560

100.00

从图表中可以知道,制造业中,总资产8866亿元,平均规模在15亿元左右。

82%的上市公司总姿产在22.5亿元以下,100亿元以上的只有1%。

在各行业中,总资产规模最大的是C8——通信电子行业20.3亿元,最低的是C2——木材家具业6.38亿元,另外,C4——石油化工、C5——橡胶塑料、C6——金属非金属的总资产规模在平均之上。

图2—1560家制造业公司总资产分布

(2)净利润分布数列和直方图

净利润描述统计

平均

标准误差

中值

模式

标准偏差;

样本方差

峰值

偏斜度

区域

最小值

最大值

求和

计数

置信度

(95%)

6

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 建筑土木

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1