直流输电技术课题研究.docx

上传人:b****6 文档编号:6030193 上传时间:2023-01-03 格式:DOCX 页数:12 大小:1.23MB
下载 相关 举报
直流输电技术课题研究.docx_第1页
第1页 / 共12页
直流输电技术课题研究.docx_第2页
第2页 / 共12页
直流输电技术课题研究.docx_第3页
第3页 / 共12页
直流输电技术课题研究.docx_第4页
第4页 / 共12页
直流输电技术课题研究.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

直流输电技术课题研究.docx

《直流输电技术课题研究.docx》由会员分享,可在线阅读,更多相关《直流输电技术课题研究.docx(12页珍藏版)》请在冰豆网上搜索。

直流输电技术课题研究.docx

直流输电技术课题研究

目录

一、前言1

二、直流输电的发展1

三、直流输电的运行方式2

四、直流输电的功能及优点2

4.1功能2

4.2优点3

五、换流站的主要设备4

六、经济性三大特性突出节能效果4

七、远距离输电优势明显5

八、提升空间大功率电力电子器件将改善直流输电性能8

九、工程应用8

十、安顺500kv换流站实例9

十一、发展趋势13

高压直流输电技术

一、前言

自上世纪80年代以来,电力传输技术的发展步伐明显加快,提高传输能力的办法不断涌现,既有直流输电技术、柔性交流输电技术、分频输电技术等高新技术,同时也有对现有高压交流输电线路的增容改造技术,如升压改造、复导增容改造、交流输电线路改为直流输电技术等。

直流输电,对于提高现有传输系统的传输能力,挖掘现有设备潜力,具有十分重要的现实意义,实施起来可收到事半功倍的效果。

二、直流输电的发展

追溯历史,最初采用的输电方式是直流输电,于1874年出现于俄国。

当时输电电压仅100V。

随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V。

但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难。

由于不能直接给直流电升压,输电距离受到极大的限制,不能满足输送容量增长和输电距离增加的要求。

19世纪80年代末,人类发明了三相交流发电机和变压器。

1891年,世界上第一个三相交流发电站在德国竣工后,此交流输电普遍代替了直流输电。

随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流输电遇到了一系列技术困难。

大功率换流器(整流和逆变)的研究成功,为高压直流输电突破了技术上的障碍,直流输电重新受到人们的重视。

1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电装置,1954年,建起了世界上第一条远距离高压直流输电工程。

之后,直流输电在世界上得到了较快发展,现在直流输电工程的电压等级大多为±275~±500kV,投入商业运营的直流工程最高电压等级为±600kV(巴西伊泰普工程),我国计划在西南水电送出的直流工程中采用±800kV电压等级。

三、直流输电的运行方式

在现代直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。

在输电线路的送端,交流系统的交流电经换流站内的换流变压器送到整流器,将高压交流电变为高压直流电后送入直流输电线路。

直流电通过输电线路送到受端换流站内的逆变器,将高压直流电又变为高压交流电,再经过换流变压器将电能输送到交流系统。

在直流输电系统中,通过控制换流器,可以使其工作于整流或逆变状态。

我国目前建成的高压直流输电工程均为两端直流输电系统。

两端直流输电系统主要由整流站、逆变站和输电线路三部分组成,两端直流输电系统可以采用双极和单极两种运行方式。

在双极运行方式中,利用正负两极导线和两端换流站的正负极相连,构成直流侧的闭环回路。

两端接地极所形成的大地回路可作为输电系统的备用导线。

正常运行时,直流电流的路径为正负两根极导线。

实际上,它们是由两个独立运行的单极大地回路系统构成。

正负两极在地中的电流方向相反,地中电流为两极电流之差。

两极电流之差形成的电流为不平衡电流,由接地极导引入地。

在双极运行时,不平衡电流一般控制在额定电流的1%之内。

单极运行方式又分为单极金属返回和单极大地返回两种运行方式。

在单极金属返回运行方式中,利用两根导线构成直流侧的单极回路,直流线路中的一根导线用作正或负极导线,另一根用作金属返回线。

在此运行方式中,地中无电流通过。

在单极大地返回运行方式中,利用一根或两根导线和大地构成直流侧的单极回路。

在该运行方式中,两端换流站均需接地,大地作为一根导线,通过接地极入地的电流即为直流输电工程的运行电流。

四、直流输电的功能及优点

4.1功能

  在一个高压直流输电系统中,电能从三相交流电网的一点导出,在换流站转换成直流,通过架空线或电缆传送到接受点;直流在另一侧换流站转化成交流后,再进入接收方的交流电网。

直流输电的额定功率通常大于100兆瓦,许多在1000-3000兆瓦之间。

  高压直流输电用于远距离或超远距离输电,因为它相对传统的交流输电更经济。

  应用高压直流输电系统,电能等级和方向均能得到快速精确的控制,这种性能可提高它所连接的交流电网性能和效率,直流输电系统已经被普遍应用。

  高压直流输电是将三相交流电通过换流站整流变成直流电,然后通过直流输电线路送往另一个换流站逆变成三相交流电的输电方式。

它基本上由两个换流站和直流输电线组成,两个换流站与两端的交流系统相连接。

直流输电线造价低于交流输电线路但换流站造价却比交流变电站高得多。

一般认为架空线路超过600-800km,电缆线路超过40-60km直流输电较交流输电经济。

随着高电压大容量可控硅及控制保护技术的发展,换流设备造价逐渐降低直流输电近年来发展较快。

我国葛洲坝一上海1100km、±500kV,输送容量的直流输电工程,已经建成并投入运行。

此外,全长超过2000公里的向家坝-上海直流输电工程也已经完成。

该线路是目前(截至2011年初)世界上距离最长的高压直流输电项目。

4.2优点

  是不增加系统的短路容量便于实现两大电力系统的非同期联网运行和不同频率的电力系统的联网;利用直流系统的功率调制能提高电力系统的阻尼,抑制低频振荡,提高并列运行的交流输电线的输电能力。

它的主要缺点是直流输电线路难于引出分支线路绝大部分只用于端对端送电。

加拿大原计划开发和建设五端直流输电系统现已建成三端直流输电系统。

实现多端直流输电系统的主要技术困难是各种运行方式下的线路功率控制问题。

目前,一般认为三端以上的直流输电系统技术上难实现经济合理性待研究。

五、换流站的主要设备

包括换流器、换流变压器、平波电抗器、交流滤波器、直流避雷器及控制保护设备等。

  换流器又称换流阀是换流站的关键设备,其功能是实现整流和逆变。

目前换流器多数采用晶闸管可控硅整流管)组成三相桥式整流作为基本单元,称为换流桥。

一般由两个或多个换流桥组成换流系统,实现交流变直流直流变交流的功能。

  换流器在整流和逆变过程中将要产生5、7、11、13、17、19等多次谐波。

为了减少各次谐波进入交流系统在换流站交流母线上要装设滤波器。

它由电抗线圈、电容器和小电阻3种设备串联组成通过调谐的参数配合可滤掉多次谐波。

一般在换流站的交流侧母线装有5、7、11、13次谐波滤波器组。

  单极又分为一线一地和单极两线的方式。

直流输电一般采用双极线路,当换流器有一极退出运行时,直流系统可按单极两线运行,但箱送功率要减少一半。

  2009年,瑞士ABB集团与西班牙Abengoa集团合作,开始建设连接巴西西北部两座新建水电站和巴西经济中心圣保罗的2500公里高压直流输电线路。

该线路竣工后将成为世界最长的高压直流输电线路

六、经济性三大特性突出节能效果

  从经济方面看,直流输电有以下三个主要优点:

  首先,线路造价低,节省电缆费用。

直流输电只需两根导线,采用大地或海水作回路只用一根导线,能够节省大量线路投资,因此电缆费用省得多。

  其次,运行电能损耗小,传输节能效果显著。

直流输电导线根数少,电阻发热损耗小,没有感抗和容抗的无功损耗,且传输功率的增加使单位损耗降低,大大提高了电力传输中的节能效果。

  最后,线路走廊窄,征地费省。

以同级500千伏电压为例,直流线路走廊宽仅40米,对于数百千米或数千千米的输电线路来说,其节约的土地量是很可观的。

除了经济性,直流输电的技术性也可圈可点。

直流输电调节速度快,运行可靠。

在正常情况下能保证稳定输出,在事故情况下可实现紧急支援,因为直流输电可通过可控硅换流器快速调整功率、实现潮流翻转。

此外,直流输电线路无电容充电电流,直流线路无电容充电电流,电压分布平稳,负载大小不发生电压异常不需并联电抗。

七、远距离输电优势明显

  发电厂发出的交流电通过换流阀变成直流电,然后通过直流输电线路送至受电端再变成交流电,注入受端交流电网。

业内专家一致认为。

高压直流输电具有线路输电能力强、损耗小、两侧交流系统不需同步运行、发生故障时对电网造成的损失小等优点,特别适合用于长距离点对点大功率输电。

  其中,轻型直流输电系统采用可关断的晶闸管、绝缘门极双极性三极管等可关断的器件组成换流器,使中型的直流输电工程在较短输送距离也具有竞争力。

此外,可关断器件组成的换流器,还可用于向海上石油平台、海岛等孤立小系统供电,未来还可用于城市配电系统,接入燃料电池、光伏发电等分布式电源。

轻型直流输电系统更有助于解决清洁能源上网稳定性问题。

1、高压直流输电与交流输电相比,具有诸多优点:

(1)高压直流输电具有明显的经济性。

输送相同功率时,直流输电线路所用线材仅为交流输电的1/2~2/3。

直流输电采用两线制,与采用三线制三相交流输电相比,在输电线路导线截面和电流密度相同的条件下,若不考虑趋肤效应,输送相同的电功率,输电线和绝缘材料可节省约1/3。

如果考虑到趋肤效应和各种损耗,输送同样功率交流电所用导线截面积大于或等于直流输电所用导线截面积的1.33倍。

因此,直流输电所用的线材几乎只有交流输电的一半。

另外,直流输电线路的杆塔结构也比同容量的三相交流输电线路的简单,线路走廊占地面积也大幅减少,图5-2分别给出了两者的走廊照片。

但是,直流输电系统中的换流站的造价和运行费用要比交流输电系统变电站的高,当输电距离增加到一定值后,直流输电线路所节省的费用刚好抵偿了换流站所增加的费用,此时这个输电距离即被称为交流输电与直流输电的等价距离。

如果把交流输电和直流输电两种输电方式在输送一定功率时,所需的费用和输电距离之间的关系绘成如图5-3(a)所示的曲线,两曲线交点的横坐标就是等价距离。

5-3图(b)给出了随着输送距离的增加,交流和直流输电系统的线路损耗曲线。

图5-2交流输电和直流输电线路走廊

(a)交流输电线路走廊;(b)直流输电线路走廊

图5-3交流输电与直流输电系统等价距离和线路损耗对比图

(a)总投资与线路距离的关系;(b)架空输电线路的损耗

(2)在电缆输电线路中,高压直流输电线路不产生电容电流,而交流输电线路存在电容电流,引起损耗。

在一些特殊场合,如输电线路经过海峡时,必须采用电缆。

由于电缆芯线与大地之间构成同轴电容器,在交流高压输电线路中,空载电容电流极为可观。

而在直流输电线路中,由于电压波动很小,基本上没有电容电流加在电缆上。

(3)采用直流输电时,线路两端交流系统不需同步运行,而交流输电必须同步运行。

采用远距离交流输电时,交流输电系统两端电流的相位存在显著差异;并网的各子系统交流电的频率虽然规定为50Hz,但实际上常产生波动。

这两种因素导致交流系统不同步,需要用复杂而庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的环流而损坏设备,或造成不同步运行而引起停电事故。

采用直流输电线路将两个交流系统互连时,其两端的交流电网可以按各自的频率和相位运行,不需进行同步调整。

(4)高压直流输电控制方便、速度快,发生故障的损失比交流输电的小。

两个交流系统若用交流线路互连,则当一侧系统发生短路时,另一侧要向故障侧输送短路电流。

因此,将使两侧系统原有断路器切断短路电流的能力受到威胁,需要更换断路器。

若用直流输电将两个交流系统互连,由于采用可控硅装置,电路功率能迅速、方便地进行调节,直流输电线路向发生短路的交流系统输送的短路电流不大,故障侧交流系统的短路电流与没有互连时几乎一样。

因此不必更换两侧原有开关及载流设备。

(5)在高压直流输电工程中,各极是独立调节和工作的,彼此没有影响。

所以,当一极发生故障时,只需停运故障极,另一极仍可输送至少50%的电能。

但在交流输电线路中,任一相发生永久性故障,必须全线停电。

2、高压直流输电的缺点:

(1)直流换流站比交流变电站的设备多、结构复杂、造价高、损耗大、运行费用高;

(2)谐波较大;

(3)直流输电工程在单极大地回路方式下运行时,入地电流会对附近的地下金属体造成一定腐蚀,窜入交流变压器的直流电流会使变压器噪声增加;

(4)若要实现多端输电,技术比较复杂。

八、提升空间大功率电力电子器件将改善直流输电性能

  直流输电最核心的技术集中于换流站设备,换流站实现了直流输电工程中直流和交流相互能量转换,除在交流场具有交流变电站相同的设备外,还有以下特有设备:

换流阀、控制保护系统、换流变压器、交流滤波器和无功补偿设备、直流滤波器、平波电抗器以及直流场设备,而换流阀是换流站中的核心设备,其主要功能是进行交直流转换,从最初的汞弧阀发展到现在的电控和光控晶闸管阀。

晶闸管用于高压直流输电已有很长的历史。

近10多年来,可关断的晶闸管、绝缘门极双极性三极管等大功率电子器件的开断能力不断提高,新的大功率电力电子器件的研究开发和应用,将进一步改善新一代的直流输电性能、大幅度简化设备、减少换流站的占地、降低造价。

九、工程应用

  1.±660千伏宁东—山东直流输电工程于2011年2月28日投运,山东接受外送电力的能力由350万千瓦提升至750万千瓦。

据统计,山东因此每年可节约原煤1120万吨。

由此全省减少二氧化硫排放5.7万吨,二氧化硫排放量降低1.1个百分点,大大促进了资源节约型、环境友好型社会建设。

  仅2011年第一季度,山东电网就接纳省外来电91.3亿千瓦时,同比增长176%。

  2.锦屏—苏南±800千伏特高压直流输电工程采用900平方毫米导线,节能环保效果明显,抗自然灾害能力强,可进一步促进电力技术创新和行业技术升级。

与传统的630平方毫米截面导线相比,锦苏特高压直流线路应用900平方毫米截面导线,按照年运行3000小时计算,每年每千米线路可节电4.32万千瓦时,全线一年将创造直接效益4000多万元。

  按供电煤耗360克标煤/千瓦时计算,全线一年将减少标煤消耗7.735万吨,减排二氧化碳约20.12万吨。

而在抵御自然灾害方面,大截面导线的大风水平荷载降低约10%,15毫米覆冰垂直荷载减小约7%。

3.三峡—上海±500千伏直流输电工程线路全长1048.6千米,输送容量300万千瓦,若按中强度全铝合金导线替代普通导线计算,正常功率下,如果一年的输送小时数为4000小时,可节约电能7.98万千瓦时/千米,全线每年可节电8372万千瓦时

十、安顺500kv换流站实例

安顺换流站作为500kV贵广直流输电工程的起点,位于贵州安顺市以西约12.5公里的普定县白岩镇,海拔1420米,是目前世界海拔最高的换流站。

有三个世界第一(世界上首次在高压直流输电工程中采用带正向保护的光直接触发可控硅元件。

安顺换流站在直流输电工程中首次采用三调谐交、直流滤波器,简化了滤波场设计,节约了投资。

安顺换流站是世界上第一个海拔超过1000千米的换流站,首次成功解决了高海拔地区直流输电外绝缘方面的问题)。

基于以上特点,安顺换流站是国内已建成的输电容量最大,科技含量最高的换流站,可称为“天下第一站”

安顺换流站是世界上第一座高海拔,远距离,大容量,并使用光触发晶闸管技术的换流站,建成后由中国南方电网有限责任公司超高压输电公司贵阳局负责生产运行管理。

1、接线方式

500kV交流场接线为3/2接线方式,共三回交流进线

2、设备概况

每极6台换流变,型号EFPH8557,生产厂家为SIEMENS。

单台容量297MVA,冷却方式为强迫油循环风冷。

500kV交流场和滤波场断路器为SF6型,ABB公司生产,型号HPL-550B2。

贵广直流工程双极的正式投产,是南方电网发展的一个重要里程碑。

到目前为止,南方电网西电东送已经形成“八交四直”12条500千伏大通道。

他的建成a、促进贵州经济发展b、缓解广东缺电局面c、提高南网安全稳定。

贵广直流系统主接线图

一般采用双极平衡运行,双极额定输送功率为3000MW。

500kV交流场接线为3/2接线方式,共三回交流进线

每极6台换流变,型号EFPH8557,生产厂家为SIEMENS。

单台容量297MVA,冷却方式为强迫油循环风冷。

世界上首次在高压直流输电工程中采用带正向保护的光直接触发可控硅元件。

换流站在直流输电工程中首次采用三调谐交、直流滤波器,简化了滤波场设计,节约了投资。

安顺换流站是世界上第一个海拔超过1000千米的换流站,首次成功解决了高海拔地区直流输电外绝缘方面的问题。

十一、发展趋势

由上可见,高压直流输电具有线路输电能力强、损耗小、两侧交流系统不需同步运行、发生故障时对电网造成的损失小等优点,特别适合用于长距离点对点大功率输电。

而采用交流输电系统便于向多端输电。

交流与直流输电配合,将是现代电力传输系统的发展趋势。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1