机械原理课程设计大作业平面六杆机构.docx
《机械原理课程设计大作业平面六杆机构.docx》由会员分享,可在线阅读,更多相关《机械原理课程设计大作业平面六杆机构.docx(17页珍藏版)》请在冰豆网上搜索。
机械原理课程设计大作业平面六杆机构
平面六杆机构的运动分析
成绩
指导老师
班级
学号
一、题目说明
所示为一平面六杆机构。
设已知各构件的尺寸如下表所示,又知原动件1以等角速度ω1=1rad/s沿逆时针方向回转,试求各从动件的角位移、角速度及角加速度以及E点的位移、速度及加速度的变化情况。
已知其尺寸参数如下表所示:
组号
L1
L2
L2’
L3
L4
L5
L6
α
xG
yG
1-A
26.5
105.6
65.0
67.5
87.5
34.4
25.0
600
153.5
41.7
题目要求:
两人一组计算出原动件从0到360时(计算点数361)所要求的各运动变量的
大小,并绘出运动曲线图及轨迹曲线。
二、题目分析
1)建立封闭图形:
L1+L2=L3+L4
L1+L2=L5+L6+AG
2)机构运动分析
a、角位移分析
由图形封闭性得:
b、角速度分析
上式对时间求一阶导数,可得速度方程:
化为矩阵形式为:
c、角加速度分析:
矩阵对时间求一阶导数,可得加速度矩阵为:
d、E点的运动状态
位移:
速度:
加速度:
三、源程序
%Run.m%
thetas;%角度fine
angularvelocity;%角速度fine
angularacceleration;%角加速度fine
Edisplacement;%E点位移fine
Eangularvelocity;%E点速度fine
Eangularacceleration;%E点加速度fine
%solveequations.m%
%-------------------方程组-------------------%
functionF=solveequations(x,thed1)
F=[26.5*cosd(thed1)+105.6*cosd(x
(1))-67.5*cosd(x
(2))-87.5;
26.5*sind(thed1)+105.6*sind(x
(1))-67.5*sind(x
(2));
26.5*cosd(thed1)+105.6*cosd(x
(1))+65*cosd(60)*cosd(x
(1))+65*sind(60)*sind(x
(1))-153.5-25*cosd(x(4))-34.4*cosd(x(3))
26.5*sind(thed1)+105.6*sind(x
(1))+65*cosd(60)*sind(x
(1))-65*sind(60)*cosd(x
(1))-41.7-25*sind(x(4))-34.4*sind(x(3))
];
%functionF=solveequations(x,thed1,l1,l2,l3,l4,l5,l6,a)
%F=[l1*cosd(thed1)+l2*cosd(x
(1))-l3*cosd(x
(2))-l4;
%l1*sind(thed1)+l2*sind(x
(1))-l3*sind(x
(2));
%l1*cosd(thed1)+l2*cosd(x
(1))-l2'*cosd(60)*cosd(x
(1))+l2'*sind(60)*sind(x
(1))-153.5-l6*cosd(x(4))-l5*cosd(x(3));
%l1*sind(thed1)+l2*sind(x
(1))-l2'*cosd(60)*sind(x
(1))+l2'*sind(60)*cosd(x
(1))-41.7-l6*sind(x(4))-l5*sind(x(3));];
%thetas.m%
%------------------------赋初值---------------------%
l1=26.5;
l2=105.6;
l3=67.5;
l4=87.5;
l5=34.4;
l6=25.0;
a=60;
thed1=0:
360;
thed2=0:
360;
thed3=0:
360;
thed5=0:
360;
thed6=0:
360;
thed22=0:
360;
m=[36.77905;69.573132;-57.53719284;92.66548461];
fori=1:
1:
361
x=fsolve(@(x)solveequations(x,thed1(i)),[m
(1);m
(2);m(3);m(4)]);
m=x;
thed2(i)=x
(1);
thed3(i)=x
(2);
thed5(i)=x(3);
thed6(i)=x(4);
end
figure
(1);%画各个角度图像
x=0:
360;
y1=[thed2;thed3;thed5;thed6];
plot(x,y1);
xlabel('\theta1');
ylabel('\theta2,\theta3,\theta5,\theta6');
gridminor;
legend('\theta2','\theta3','\theta5','\theta6');
%angularvelocity.m%
%-------------------------角速度-------------------------%
w2=0:
360;
w3=0:
360;
w5=0:
360;
w6=0:
360;
fori=1:
1:
361
V1=[-105.6*sind(thed2(i))67.5*sind(thed3(i))00;
105.6*cosd(thed2(i))-67.5*cosd(thed3(i))00;
-(105.6+65*cosd(60))*sind(thed2(i))+65*sind(60)*cosd(thed2(i))034.4*sind(thed5(i))25*sind(thed6(i));
(105.6+65*cosd(60))*cosd(thed2(i))+65*sind(60)*sind(thed2(i))0-34.4*cosd(thed5(i))-25*cosd(thed6(i))];
V2=[(l1)*sind(thed1(i));
-(l1)*cosd(thed1(i));
(l1)*sind(thed1(i));
-(l1)*cosd(thed1(i));];
V3=V1\V2;
w2(i)=V3
(1);
w3(i)=V3
(2);
w5(i)=V3(3);
w6(i)=V3(4);
end
figure(3);
y2=[w2;w3;w5;w6];
plot(x,y2);
xlabel('\theta1');
ylabel('\omega2,\omega3,\omega5,\omega6');
legend('\omega2','\omega3','\omega5','\omega6');
gridminor;
%angularacceleration.m%
%-------------------------角加速度--------------------------%
a2=0:
360;
a3=0:
360;
a5=0:
360;
a6=0:
360;
fori=1:
1:
361
%w2w3w5w6
A111=[105.6*cosd(thed2(i))*w2(i)-67.5*cosd(thed3(i))*w3(i)00;
105.6*sind(thed2(i))*w2(i)-67.5*sind(thed3(i))*w3(i)00;
((105.6+65*cosd(60))*cosd(thed2(i))+65*sind(60)*sind(thed2(i)))*w2(i)0-34.4*cosd(thed5(i))*w5(i)-25*cosd(thed6(i))*w6(i);
((105.6+65*cosd(60))*sind(thed2(i))-65*sind(60)*cosd(thed2(i)))*w2(i)0-34.4*sind(thed5(i))*w5(i)-25*sind(thed6(i))*w6(i);];
A112=[w2(i);w3(i);w5(i);w6(i)];
A11=A111*A112;
A12=[l1*cosd(thed1(i));
l1*sind(thed1(i));
l1*cosd(thed1(i));
l1*sind(thed1(i));];
A1=A11+A12;
A2=[-l2*sind(thed2(i))l3*sind(thed3(i))00;
l2*cosd(thed2(i))-l3*cosd(thed3(i))00;
-(105.6+65*cosd(60))*sind(thed2(i))+65*sind(60)*cosd(thed2(i))034.4*sind(thed5(i))25*sind(thed6(i));
(105.6+65*cosd(60))*cosd(thed2(i))+65*sind(60)*sind(thed2(i))0-34.4*cosd(thed5(i))-25*cosd(thed6(i));];
A3=A2\A1;
a2(i)=A3
(1);
a3(i)=A3
(2);
a5(i)=A3(3);
a6(i)=A3(4);
end
figure(5);
y3=[a2;a3;a5;a6];
plot(x,y3);
xlabel('\alpha1');
ylabel('\alpha2,\alpha3,\alpha5,\alpha6');
gridminor;
legend('\alpha2','\alpha3','\alpha5','\alpha6');
%Edisplacement.m%
%-----------------------E点位移图像-------------------------%
ex=0:
360;
ey=0:
360;
e=0:
360;
fori=1:
1:
361
ex(i)=153.5+25*cosd(thed6(i))+34.4*cosd(thed5(i));
ey(i)=41.7+25*sind(thed6(i))+34.4*sind(thed5(i));
e(i)=(ex(i)^2+ey(i)^2)^0.5;
end
figure
(2);
x=0:
360;
y1=[ex;ey;e];
plot(x,y1);
xlabel('\theta1');
ylabel('ex,ey,e');
gridminor;
legend('ex','ey','e');
%Eangularvelocity.m%
%--------------------E点速度图像--------------------%
evx=0:
360;
evy=0:
360;
ev=0:
360;
fori=1:
1:
361
evx(i)=-l6*w6(i)*sind(thed6(i))-l5*w5(i)*sind(thed5(i));
evy(i)=l6*w6(i)*cosd(thed6(i))+l5*w5(i)*cosd(thed5(i));
ev(i)=(evx(i)^2+evy(i)^2)^0.5;
end
figure(4);
x=0:
360;
y1=[evx;evy;ev];
plot(x,y1);
xlabel('\theta1');
ylabel('Evx,Evy,Ev');
gridminor;
legend('Evx','Evy','Ev');
%Eangularacceleration.m%
%-------------------------E点加速度图像-------------------%
eax=0:
360;
eay=0:
360;
ea=0:
360;
fori=1:
1:
361
eax(i)=-l6*a6(i)*sind(thed6(i))-l6*w6(i)^2*cosd(thed6(i))-l5*a5(i)*sind(thed5(i))-l5*w5(i)^2*cosd(thed5(i));
eay(i)=l6*a6(i)*cosd(thed6(i))-l6*w6(i)^2*sind(thed6(i))+l5*a5(i)*cosd(thed5(i))-l5*w5(i)^2*sind(thed5(i));
ea(i)=(eax(i)^2+eay(i)^2)^0.5;
end
figure(6);
x=0:
360;
y1=[eax;eay;ea];
plot(x,y1);
xlabel('\theta1');
ylabel('Eax,Eay,Ea');
gridminor;
legend('Eax','Eay','Ea');
四、曲线图:
E点的位移:
E点的速度图:
E点的加速度图:
五、Adams结果验证
------------------------------------------------------------
点击观看:
仿真动画(若超链接无效,打开文件夹内“仿真动画.gif”)
------------------------------------------------------------
从动件角位移:
从动件角速度:
从动件角加速度:
E点位移:
E点速度:
E点加速度: