tdlte的宏蜂窝网络规划与.docx

上传人:b****5 文档编号:5851459 上传时间:2023-01-01 格式:DOCX 页数:62 大小:875.15KB
下载 相关 举报
tdlte的宏蜂窝网络规划与.docx_第1页
第1页 / 共62页
tdlte的宏蜂窝网络规划与.docx_第2页
第2页 / 共62页
tdlte的宏蜂窝网络规划与.docx_第3页
第3页 / 共62页
tdlte的宏蜂窝网络规划与.docx_第4页
第4页 / 共62页
tdlte的宏蜂窝网络规划与.docx_第5页
第5页 / 共62页
点击查看更多>>
下载资源
资源描述

tdlte的宏蜂窝网络规划与.docx

《tdlte的宏蜂窝网络规划与.docx》由会员分享,可在线阅读,更多相关《tdlte的宏蜂窝网络规划与.docx(62页珍藏版)》请在冰豆网上搜索。

tdlte的宏蜂窝网络规划与.docx

tdlte的宏蜂窝网络规划与

编号:

审定成绩:

 

设计(论文)题目:

TD-LTE宏蜂窝网络规划研究

学院名称:

学生姓名:

专业:

班级:

学号:

指导教师:

答辩组负责人:

填表时间:

2014年6月

 

摘要

移动互联网和智能终端的普及,使移动数据业务呈现爆炸性的增长态势,而移动通信频谱资源的短缺性矛盾,也推动着移动通信技术的不断创新。

随着TD-LTE规模技术试验网的建设,未来几年,我国移动通信将进入LTE时代。

在此背景下,需要加强针对TD-LTE网络规划和设计方面的研究,为即将到来的TD-LTE大规模网络建设做好技术准备。

本文对TD-LTE无线网络的规划进行研究,并提出可行性方案。

本文首先系统阐述了TD-LTE的基本原理,介绍了OFDM、MIMO、链路自适应等关键技术,及与2G/3G系统相比独特的网络规划特点,为TD-LTE无线网络规划的具体研究提供了基础。

接下来,论文根据TD-LTE系统特性,提出了一个详细的TD-LTE宏蜂窝网络规划流程,并给出了相应的需求分析方法,对覆盖、容量、干扰等方面的特点、主要影响因素进行了详细分析和提出合理化建议。

在以上工作的基础上,论文利用Atoll软件作为仿真平台,对广东省观澜镇建设TD-LTE宏蜂窝网络进行网络规划,通过仿真分析,并经过调整优化,最终实现规划总目标,证明该方案是可行的。

【关键词】TD-LTE网络规划覆盖优化

 

ABSTRACT

PopularizedMobileInternetandintelligentterminals,MDSpresentsahugegrowthtrend.Thecontradictionofcommunicationfrequencyresourceshortageispromotingcontinuousmobilecommunicationtechnologyinnovation.AlongwiththeconstructionoftheTD-LTEscaletechnologytestnetwork,theChinesemobiletelecommunicationwillbetheeraofLTEinthecomingfewyears.Withthebackground,weneedtostrengthentheresearchofTD-LTEnetworkplanninganddesign,forbaseofthecomingTD-LTElarge-scalenetworkconstruction.Thetargetofthepaperistostudynetworkplanningandproposethefeasiblescheme.

Firstly,thepaperstatesbasicprincipleoftheTD-LTE,introducesthekeytechnologys,suchasOFDM,MIMO,linkadaptive,andsoon.Also,introducesuniquecharacteristicofthenetworkplanningsystemcomparingto2G/3Gsystem,providesabasisforthespecificstudyofTD-LTEwirelessnetworkplanning.

Inaddition,basedonthecharacteristicsofTD-LTEsystem,thepaperputsforwardadetailedTD-LTEmacrocellnetworkplanningprocess,andprovidesthecorrespondingneedsanalysismethod,andadetailedanalysisofthecoverage,capacity,interferencecharacteristicsofthemainfactorsandmakereasonablesuggestions.

Onthebasisofabovework,thepaperusesAtollsoftwareasthesimulationplatform,planedTD-LTEnetworkwirelessforGuanlanTownofGuangdongProvince.Throughthesimulationanalysis,optimization,achievethegeneralplanningtargetfinally,itisprovedthattheschemeisfeasible.

【Keywords】TD-LTENetworkPlanningCoverageoptimization

 

目录

前言1

第一章LTE移动通信系统概述2

第一节移动通信的发展历史及趋势2

第二节LTE移动通信系统简介2

一、LTE技术目标2

二、LTE标准进展5

三、LTE国内外商用情况6

第三节本章小结7

第二章TD-LTE无线网络规划基础8

第一节TD-LTE基本原理8

一、LTE网络结构8

二、TD-LTE帧结构9

第二节TD-LTE关键技术11

一、OFDM11

二、MIMO12

三、链路自适应14

四、小区间干扰控制15

五、多媒体广播业务16

第三节TD-LTE网络规划特点17

一、需求分析17

二、频率规划18

三、覆盖规划及链路预算特点19

四、容量规划特点20

五、参数规划特点20

第四节本章小结20

第三章TD-LTE无线网络规划技术分析21

第一节TD-LTE无线网络规划流程21

第二节TD-LTE网络规划需求分析22

第三节TD-LTE覆盖性能分析24

一、TD-LTE覆盖特性24

二、覆盖参数25

三、TD-LTE链路预算26

第四节TD-LTE容量性能分析27

一、TD-LTE容量特性27

二、TD-LTE容量目标28

三、TD-LTE理论峰值速率计算28

四、影响TD-LTE容量性能的主要因素29

五、TD-LTE容量评估指标29

六、容量规划建议30

第五节干扰协调及规避方法分析30

一、系统内干扰30

二、系统间干扰31

三、系统间干扰隔离要求34

第六节本章总结34

第四章宏站规划仿真及结果分析35

第一节仿真环境与数据准备35

一、项目概况35

二、规划原理36

三、规划目标36

四、仿真工具及参数设置36

第二节仿真验证及分析38

一、仿真基本步骤38

二、仿真结果及分析39

三、站点优化41

第三节本章小结43

结论44

致谢45

参考文献46

附录47

一、英文原文:

47

二、英文翻译:

55

前言

20世纪世界已经进入一个高速发展的时代,没有信息的传递和交流,人们就无法适应现代化的快节奏的生活和工作。

人们期望随时随地及时可靠不受时空限制地进行信息交流,提高工作的效率和经济效益。

然而随着移动业务量的增长、新业务和新技术的出现。

仅仅能够及时可靠地进行信息交流已经不能够满足人们的要求了,人们的通信习惯也从以往的点到点演进到人与人;人们的通信习惯也从以往的点到点演进到人与人;第三代移动通信(3G)的问世,再到第三代的增强型移动通信(B3G),真正敞开了高速数据的移动宽带体验之门,为用户提供了更加丰富多彩的通信和娱乐业务。

然而,无论3G还是B3G都还存在着很多的局限性。

市场的发展、业务的需求已远远超越了现有无线网络的承载能力。

因此,迫切需要寻找突破性的空中接口技术和网络结构在降低无线数据网络的运营成本、应对市场挑战和满足用户需求、摆脱知识产权限制等领域。

WCDMA/HSDPA与WiFi、WiMAX等无线接入方案相比,空中接口和网络结构过于复杂,虽在支持QoS和移动性方面有较大优势,但在频谱效率、比特成本和传输时延等能力方面却明显落后。

知识产权的制约、用户的需求和市场的挑战共同作用下,推动了3GPP(第三代合作伙伴计划)组织在4G出现之前加速制定新的空中接口和无线接入网网络标准。

中国工信部于2013年12月4日向中国移动通信集团公司、中国电信集团公司和中国联合网络通信集团有限公司颁发“LTE/第四代数字蜂窝移动通信业务(TD-LTE)”经营许可。

中国移动获得130MHz频谱资源,分别为1880-1900MHz、2320-2370MHz、2575-2635MHz;中国联通获得40MHz频谱资源,分别为2300-2320MHz、2555-2575MHz;中国电信获得40MHz频谱资源,分别为2370-2390MHz、2635-2655MHz。

随着中国移动TD-LTE规模试验网部署,中国进入了LTE时代。

 

第一章LTE移动通信系统概述

第一节移动通信的发展历史及趋势

20世纪70年代末,美国AT&T公司通过使用电话技术和蜂窝无线电技术研制了第一套蜂窝移动电话系统,取名为先进的移动电话系统,即AMPS(AdvancedeMobilePhoneService)系统。

第一代移动通信的各种蜂窝网系统有很多相似之处,但是也有很大的差异,它们只能提供基本的语音会话业务,不能提供非语音业务,并且保密性差,容易并机盗打,它们之间还互不兼容,显然移动用户无法在各种系统之间实现漫游。

为了解决由于采用不同模拟蜂窝系统造成互不兼容无法漫游服务的问题,于是第二代移动通信数字无线标准问世了。

在第二代技术中还诞生了2.5G,也就是GSM系统的GPRS和CDMA系统的IS-95B技术,大大提高了数据传送能力。

第三代移动通信技术也就是IMT-2000,简称3G。

它是一种真正意义上的宽带移动多媒体通信系统,它能提供高质量的宽带多媒体综合业务,并且实现了全球无缝覆盖全球漫游它的数据传输速率高达2Mbit/S,其容量是第二代移动通信技术的2-5倍。

目前最具有代表性的有美国提出的MC-CDMA(CDMA2000),欧洲和日本提出的W-CDMA和中国提出的TD-SCDMA。

2004年11月份3GPP会议上,3GPP决定开始3G系统的长期演进研究项目。

作为一种先进的技术LTE需要系统在提高峰值数据速率、小区边缘速率、频谱利用率,并着眼于降低运营和建网成本方面进行进一步改进,为使用户能够获得“AlwaysOnline”的体验,需要降低控制和用户平面的延时。

 

第二节LTE移动通信系统简介

一、LTE技术目标

为了应对宽带接入技术的挑战,同时为了满足新型业务需求,国际标准化组织3GPP在2004年底启动了器长期演进(LTE)技术的标准化工作。

希望达到以下几个主要目标:

Peakdatarate(峰值数据速率):

在20M带宽下,下行数据速率大于100Mb/s,上行数据速率大于50Mb/s。

Control-planelatency(控制面延时):

空闲模式(如Release6IdleMode)到激活模式(Release6CELL_DCH)的转换时间不超过100ms;休眠模式(如Release6CELL_PCH)到激活模式(Release6CELL_DCH)的转换时间不超过50ms。

Control-planecapacity(控制面容量):

在5MHz带宽内每小区最少支持200个激活状态的用户。

User-planelatency(用户面延时):

在小IP分组和空载条件下(如单小区单用户单数据流),用户面延时不超过5ms。

Userthroughput(用户吞吐量):

每MHz的下行平均用户吞吐量是Release6HSDPA下行吞吐量的3到4倍;每MHz的上行平均用户吞吐量是Release6HSDPA上行吞吐量的2到3倍

Spectrumefficiency(频谱效率):

满负载网络下,下行频谱效率(bits/sec/Hz/site)希望达到Release6HSDPA下行的3到4倍;上行频谱效率(bits/sec/Hz/site)希望达到增强的Release6HSDPA上行的2到3倍[3]。

Mobility(移动性):

要求E-UTRAN在0to15km/h的低速移动业务达到最优,15and120km/h的更高速度下应该达到高性能[4],同时支持120km/h~350km/h的高速移动业务(甚至在某些频段达到500km/h)。

Coverage(覆盖):

5km的小区半径下,频谱效率、移动性、系统吞吐量等指标应该达到最优;达到30km小区半径时,上述指标只能有轻微下降;条件允许时也能支持100km小区半径。

需要支持MultimediaBroadcastMulticastService(MBMS):

降低终端复杂性,采用与Unicast同样的调制、编码、多址接入方式和频段;同时支持专用话音和MBMS业务,支持成对或不成对的频段。

Spectrumflexibility(频谱灵活性):

E-UTRA可以使用不同的频带宽度包括,上下行的1.25MHz,1.6MHz,2.5MHz,5MHz,10MHz,15MHzand20MHz七种不同带宽,需要支持工作在成对和不成对的频段。

需要支持资源的灵活使用,包括功率、调制方式、相同频段、不同频段、上下行,相邻或不相邻的频点分配等。

―RadioBandResource(RBR)指一个运营商的所有可以用的无线资源。

Co-existenceandInter-workingwith3GPPRadioAccessTechnology(RAT)不同系统间的共存:

支持与GERAN/UTRAN系统的共存和切换,E-UTRAN终端支持到UTRAN和/或GERAN的切入和切出的功能。

在实时业务情况下,E-UTRAN和UTRAN(orGERAN)之间的切换不能超过300毫秒。

Architectureandmigration(网络结构和演进)

单一的E-UTRAN架构;

E-UTRAN架构应该基于分组的,但是应该支持实时和会话类业务[5];

E-UTRAN架构应该减小―singlepointsoffailure(单点失败)的情况出现;

E-UTRAN架构应该支持end-to-endQoS;

骨干网络的协议应该具有很高的效率。

RadioResourceManagementrequirements(RRM需求):

增强的endtoendQoS;更高的高层分组效率;支持在不同RadioAccessTechnologies(RAT)间的负荷分担和政策管理。

Complexity(复杂性):

要求可选项最少,减小冗余。

LTE技术目标汇总见表1.1:

表1.1LTE技术目标汇总表

项目

指标

条件

下行峰值速率

100Mb/s,频谱利用率5bps/Hz

20MHz频谱

上行峰值速率

50Mb/s,频谱利用率2.5bps/Hz

20MHz频谱

控制面延迟

小于100ms

小于50ms

控制面容量

最少支持200个激活状态的用户

5MHz带宽的小区

用户面延迟

小于5ms

空载状态(单小区单用户数据流),小IP分组用户面延迟(单向)

用户吞吐量

每MHz的下行平均用户吞吐量是Release6HSDPA下行吞吐量的3到4倍

每MHz的上行平均用户吞吐量是Release6HSDPA上行吞吐量的2到3倍[3]

频谱效率

下行频谱效率(bits/sec/Hz/site)是Release6HSDPA下行的3到4倍

满负载网络

上行频谱效(bits/sec/Hz/site)是增强的Release6HSDPA上行的2到3倍

满负载网络

移动性

低移动速度:

0~15km/h性能优化

更高移动速度:

15~120km/h的高性能

支持跨蜂窝网络的高速移动:

120km/h~350km/h(甚至在某些频段支持500km/h)。

覆盖和容量

5km小区半径内,满足频谱效率、移动性、系统吞吐量目标

30km小区半径内,轻微降质

条件允许时能支持至100km小区半径

在维持目前的站点配置不变的情况下,增加小区边缘速率,改善小区边缘用户的性能,提高小区容量[6]

进一步增强的MBMS

降低终端复杂性,MBMS采用与Unicast同样的调制、编码、多址接入方式和频段

同时支持专用话音和MBMS业务

与3GPPRAT共存和互操作

与相邻信道的GERAN/UTRAN,在相同地理区域共存和共站具备UTRANand/orGERAN功能的E-UTRAN多模终端支持3GPPUTRAN和3GPPGERAN的测量和双向切换

支持与现有3GPP和non-3GPP系统(WiMAX、cdma2000、WLAN)互操作

E-UTRAN与UTRAN(或GERAN)之间的实时业务切换

业务中断时间小于300ms

网络结构和演进

LTE采用基于分组域的FlatAll-IP网络架构,取消CS(电路交换)域。

CS域业务在PS(包交换)域实现,如采用VoIP

支持增强的IMS(IP多媒体子系统)

从上可以看出,与3G网络相比,LTE在网络性能的多个方面都有很大的提高。

其主要特性表现在更高的数据速率和更低的网络时延,加上更低的业务成本,共同为用户带来更加丰富的多媒体业务体验。

二、LTE标准进展

为了应对宽带接入技术的挑战,同时为了满足新型业务需求,国际标准化组织3Gpp在2004年底启动了器长期演进(LTE)技术的标准化工作。

希望能够保持3GPP在移动通信领域的技术及标准优势,填补第3代移动通信系统和第4代移动通信系统之间存在的巨大技术差距;希望使用已分配给第3代移动通信系统的频谱,保持无线频谱资源的优势,解决第3代移动通信系统存在的专利过分集中问题。

与3GPP在3G时代的标准制定上类似,LTE也同时定义了LTETDD和LTEFDD两种方式,其中TDD方式又按演进路线分为LTETDD1和LTRTDD2两类。

FDD和TDD两种方式在标准上具有共同的基础,实现技术基本一致,两种技术信号生成、编码技术以及调制解调技术完全一样。

但是基于TDD方式的TD-LTE有其自身的特性和优点,保持了TDD技术独有的特点和关键技术,被确定为TD-SCDMA标准的后续演进技术。

3GPPLTE的标准化进程安排如下:

2004年12月份到2006年6月为研究阶段;2006年6月到2007年6月为工作阶段,完成3GPPLTE的标准化工作。

但由于一些问题没有解决,研究阶段推迟到2006年9月才结束。

从3GPPLTE的标准化进程来看,其初衷为第3代移动通信系统的演进,但由于其他技术的竞争,业务的需求和运营商的压力,其标准化进程实质为一场技术革命过程。

与第3代移动通信系统相比,3GPPLTE物理层(层1)在传输技术[1]、空中接口协议结构层(层2)和网络结构[2]等方面都发生了革命性的变化。

三、LTE国内外商用情况

Teliasonera于2009年年底在斯德哥摩尔、奥斯陆部署的LTE网络,是全球首个商用LTE网络。

根据GSA最新数据统计,截至2012年3月,全球95个国家共计301个运营商投资建设LTE网络,32个国家的57个LTE网络实现商用,81个国家的242个运营商承诺部署LTE。

其中,目前有4个国家的5个运营商的TD-LTE网络实现商用,主要有沙特STC和Mobily、波兰Aero2(TDD+FDD)、巴西Sky和日本软银。

GSA预计,到2012年年底,有56个国家128个LTE网络实现商用。

这些数据表明全球移动通信的竞争已经逐步转移到下一代的网络技术,同时也说明了全球LTE发展进程不断加速,移动通信网络的布局演进牵动着越来越多的运营商的注意力。

2009年年中至2010年年中,我国工业和信息化部组织、北京移动承建,在北京怀柔和顺义建设完成多厂家、多基站的TD-LTE技术验证外场,并进行了较为完备的外场测试。

2010年4月,中国移动在上海世博园开通了TD-LTE世博示范网,初步展示了TD-LTE端到端解决方案[7]。

2010年11月,中国移动在广州亚运会赛会区域建设了TD-LTE亚运示范网,期间推出了LTE业务体验区,借助亚运会的舞台,推动了TD-LTE国际化发展,同时加大了对LTE系统端到端设备的测试和验证工作,进一步促进了国内和国际厂商的技术成熟。

2010年年底工信部批复在广州、深圳、上海、杭州、南京、厦门6个城市开展TD-LTE规模技术试验网建设。

此试验属于―新一代宽带无线移动通信网国家重大专项,由工信部统一部署,中国移动配合完成规模技术试验网网络建设、优化、维护管理及相关测试工作。

中国工信部于2013年12月4日向中国移动通信集团公司、中国电信集团公司和中国联合网络通信集团有限公司颁发“LTE/第四代数字蜂窝移动通信业务(TD-LTE)”经营许可。

中国移动获得130MHz频谱资源,分别为1880-1900MHz、2320-2370MHz、2575-2635MHz;中国联通获得40MHz频谱资源,分别为2300-2320MHz、2555-2575MHz;中国电信获得40MHz频谱资源,分别为2370-2390MHz、2635-2655MHz。

 

第三节本章小结

第一章首先介绍了移动通信发展历史及趋势,随后介绍LTE移动通信系统的技术目标、LTE标准进展以及LTE国内外商用情况。

 

第二章TD-LTE无线网络规划基础

第一节TD-LTE基本原理

一、LTE网络结构

LTE系统同3GPP既有系统相似,核心网与无线接入网依然遵循着其发展原则,空中接口在无线接入网终止。

因此,核心网与无线接入网的逻辑关系依然存在,核心网与无线接入网的接口也仍旧清楚。

LTE系统从整体上说与3GPP系统类似,系统架构也可分为两部分,如图所示,一个是演进后的接入网E-UTRAN,一个是演进后的核心网EPC(即途中的MME/S-GW)。

LTE网络结构特点如下:

1LTE定义的是一个纯分组交换网络,为UE与分组数据网之间提供无缝的动IP连接。

2一个EPS承载是分组数据网关与UE之间满足一定QoS要求的IP流。

3所有网元都通过标准接口连接,满足多供应商产品间的互操作性。

图2.1LTE系统结构

E-UTRAN与UMTS网络不同的是,它的网元设备仅由eNB构成,从而形成了更扁平化的网络结构。

eNB提供终止于UE的控制面和用户面协议。

用户面协议包括无线链路控制(RLC)协议、分组数据汇聚(PDCH)协议、物理层(PHY)协议、媒体接入控制(MAC)协议等;控制面主要包括无线资源控制协议等。

eNB与EPC之间通过S1接口相连,eNB之间则通过X2接口互联。

二、TD-LTE帧结构

对于T

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1