根据MC14433的数字电压表.docx

上传人:b****5 文档编号:5844683 上传时间:2023-01-01 格式:DOCX 页数:12 大小:269KB
下载 相关 举报
根据MC14433的数字电压表.docx_第1页
第1页 / 共12页
根据MC14433的数字电压表.docx_第2页
第2页 / 共12页
根据MC14433的数字电压表.docx_第3页
第3页 / 共12页
根据MC14433的数字电压表.docx_第4页
第4页 / 共12页
根据MC14433的数字电压表.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

根据MC14433的数字电压表.docx

《根据MC14433的数字电压表.docx》由会员分享,可在线阅读,更多相关《根据MC14433的数字电压表.docx(12页珍藏版)》请在冰豆网上搜索。

根据MC14433的数字电压表.docx

根据MC14433的数字电压表

河北建筑工程学院

《电子技术》课程设计报告

设计题目:

三位半数字电压表电路的设计

院(系):

_河北建筑工程学院电气系___

专业班级:

_电子班__

学生姓名:

学号:

指导老师:

_____

设计地点(单位):

河北建筑工程学院电气实验室

设计时间:

2011年6月6日-2011年6月19日

 

数字电压表设计报告

 

一、设计目的

通过电子技术的综合设计,熟悉一般电子电路综合设计过程、设计要求、应完成的工作内容和具体的设计方法。

通过设计有助于复习、巩固以往的学习内容,达到灵活应用的目的。

设计完成后在实验室进行自行安装、调试,从而加强学生的动手能力。

在该过程中培养从事设计工作的整体概念。

 

二、设计要求

1、利用所学的知识,通过上网或到图书馆查阅资料,设计三个实现数字万用表的方案;只要求写出实验原理,画出原理功能框图,描述其功能。

2、其中对将要实验方案31/2数字电压表,需采用中、小规模集成电路、MC14433A/D转换器等电路进行设计,写出已确定方案详细工作原理,计算出参数。

3、技术指标:

Ⅰ、测量直流电压1999-1V;199.9-0.1V;19.99-0.01V;1.999-0.001V;

Ⅱ、测量交流电压1999-199V;

Ⅲ、三位半显示;

Ⅳ、比较设计方案与总体设计;

Ⅴ、根据设计过程写出详细的课程设计报告;

 

三、设计方案及原理

方案一、基于MC14433的数字电压表

方案一基于MC14433的数字电压表

方案一:

该方案大致分为五个模块,分别为基准电压模块;A/D转换模块;字形译码驱动模块;显示电路模块;字位驱动模块。

由上图可以清楚地看出,交流电流经过AC/DC转换成直流,经过电阻分压集稳压放大后进入双积分转换器MC14433测量,再通过CD4511译码器经过A/D转换器位选电路送到LED显示,完成电压测试。

方案二、基于INC7107数字电压表

方案二,基于INC7107数字电压表

方案二:

该方案将直流电压和交流电压转换电路直接同芯片INC7107连接组成,INC7107将转换后的数据显示在LED显示数码管上。

INC7017为CMOS31/2为单片双积分式A/D转换器,集模拟部分的缓冲器、积分器、电压比较器、正负电压参考源和模拟开关,以及数字部分的振荡器、计数器、锁存器、译码器、驱动器、控制器和逻辑电路于一身的芯片。

使用时只需少量电阻、电容等器件即可完成模拟量到数字量的转换。

方案三、基于AT89C52的数字电压表

 

方案三、基于AT89C52的数字电压表

方案三:

该方案采用12M晶振产生脉冲做AT89C52的内部时钟信号,通过软件设置单片机的内部定时器T0产生中断信号。

利用中断设置单片机的P2.4口取反产生脉冲做AT89C52的时钟信号。

单片机软件设置ADC0808开始A/D转换并将转换结果存到片内RAM。

系统调出显示子程序,将保存结果转化为0.00-5.00V分别保存在片内RAM;系统调出显示子程序,将转化后数据查表,输出到LED显示电路,将相应电压显示出来,程序进入下一个循环。

 

方案比较:

方案一:

选用A/D转换芯片MC14433、CD4511、MC1413、MC1403实现电压的测量,用四位数码管显示出最后的转换电压结果。

缺点是工作速度低,优点是精度较高,工作性能比较稳定,抗干扰能力比较强。

器件价格合适,采购方便,成本低,易实施。

方案二:

选用专用电压转化芯片INC7107实现电压的测量和控制。

它包含31/2位数字A/D转换器,可直接驱动LED数码管。

用四位数码管显示出最后的转换电压结果。

缺点是精度比较低,且内部电压转换和控制部分不可控制。

优点是价格低廉。

方案三:

选用单片机AT89S52和A/D转换芯片ADC0809实现电压的转换和控制,用四位数码管显示出最后的转换电压结果。

缺点是价格稍贵;优点是转换精度高,且转换的过程和控制、显示部分可以控制。

综合比较三个方案,方案一结构简单,易实施,价格合适且工作精度高,比较稳定,抗干扰能力强;而方案二虽然价格低廉,但是精度较低;方案三价格稍贵且不易操作。

综合比较我们选择了方案一。

 

四、3 1/2位数字电压表

部件构成:

◆三位半A/D转换器(MC14433):

将输入的模拟信号转换成数字信号。

◆基准电压(MC1403):

提供精密电压,供A/D转换器做参考电压。

◆译码器(MC4511):

将二—十进制(BCD)码转换成七段信号。

◆驱动器(MC1413):

驱动显示器的a,b,c,d,e,f,g七个发光段,驱动发光数码管(LED)进行显示。

◆显示器:

将译码输出的七段信号进行数字显示,读出A/D转换结果。

工作过程:

   三位半数字电压表通过位选信号DS1~DS4进行动态扫描显示,由于MC14433电路的A/D转换结果是采用BCD码多路调制方法输出,只要配上一块译码器,就可以将转换结果以数字方式实现四位数字的LED发光数码管动态扫描显示。

DS1~DS4输出多路调制选通脉冲信号。

DS选通脉冲为高电平时表示对应的数位被选通,此时该位数据在Q0~Q3端输出。

每个DS选通脉冲高电平宽度为18个时钟脉冲周期,两个相邻选通脉冲之间间隔2个时钟脉冲周期。

DS和EOC的时序关系是在EOC脉冲结束后,紧接着是DS1输出正脉冲。

以下依次为DS2,DS3和DS4。

其中DS1对应最高位(MSD),DS4则对应最低位(LSD)。

在对应DS2,DS3和DS4选通期间,Q0~Q3输出BCD全位数据,即以8421码方式输出对应的数字0~9.在DS1选通期间,Q0~Q3输出千位的半位数0或l及过量程、欠量程和极性标志信号。

在位选信号DS1选通期间Q0~Q3的输出内容如下:

Q3表示千位数,Q3=0代表千位数的数宇显示为1,Q3=1代表千位数的数字显示为0。

Q2表示被测电压的极性,Q2的电平为1,表示极性为正,即UX>0,Q2的电平为0,表示极性为负,即UX<0。

显示数的负号(负电压)由MC1413中的一只晶体管控制,符号位的“-’阴极与千位数阴极接在一起,当输入信号UX为负电压时,Q2端输出置“0”,Q2负号控制位使得驱动器不工作,通过限流电阻RM使显示器的“-”(即g段)点亮;当输入信号UX为正电压时,Q2端输出置“1”,负号控制位使达林顿驱动器导通,电阻RM接地,使“-”旁路而熄灭。

小数点显示是由正电源通过限流电阻RDP供电燃亮小数点。

若量程不同则选通对应的小数点。

过量程是当输入电压UX超过量程范围时,输出过量程标志信号---OR。

当---OR=0时,|UX|>1999,则溢出。

|UX|>UR则---OR输出低电平。

当---OR=1时,表示|UX|

平时OR输出为高电平,表示被测量在量程内。

MC14433的---OR端与MC4511的消隐端---BI直接相连,当UX超出量程范围时,---OR输出低电平,即---OR=0→---BI=0,MC4511译码器输出全0,使发光数码管显示数字熄灭,而负号和小数点依然发亮。

1.三位半A/D转换器MC14433

在数字仪表中,MC14433电路是一个低功耗三位半双积分式A/D转换器。

和其它典型的双积分A/D转换器类似,MC14433A/D转换器由积分器、比较器、计数器和控制电路组成。

如果必要设计应用者可参考相关参考书。

使用MC14433时只要外接两个电阻(分别是片内RC振荡器外接电阻和积分电阻RI)和两个电容(分别是积分电容CI和自动调零补偿电容C0)就能执行三位半的A/D转换。

MC14433内部模拟电路实现了如下功能:

(1)提高A/D转换器的输入阻抗,使输入阻抗可达l00MΩ以上;

(2)和外接的RI、CI构成一个积分放大器,完成V/T转换即电压—时间的转换;(3)构造了电压比较器,完成“0”电平检出,将输入电压与零电压进行比较,根据两者的差值决定极性输出是“1”还是“0”。

比较器的输出用作内部数字控制电路的一个判别信号;(4)与外接电容器C0构成自动调零电路。

MC14433原理框图

    除“模拟电路”以外,MC14433内部含有四位十进制计数器,对反积分时间进行3位半BCD码计数(0~1999),并锁存于三位半十进制代码数据寄存器,在控制逻辑和实时取数信号(DU)作用下,实现A/D转换结果的锁定和存储。

借助于多路选择开关,从高位到低位逐位输出BCD码Q0~Q3,并输出相应位的多路选通脉冲标志信号DS1~DS4实现三位半数码的扫描方式(多路调制方式)输出。

   MC14433内部的控制逻辑是A/D转换的指挥中心,它统一控制各部分电路的工作。

根据比较器的输出极性接通电子模拟开关,完成A/D转换各个阶段的开关转换,产生定时转换信号以及过量程等功能标志信号。

在对基准电压VREF进行积分时,控制逻辑令4位计数器开始计数,完成A/D转换。

   MC14433内部具有时钟发生器,它通过外接电阻构成的反馈,井利用内部电容形成振荡,产生节拍时钟脉冲,使电路统一动作,这是一种施密特触发式正反馈RC多谐振荡器,一般外接电阻为360kΩ时,振荡频率为100kHz;当外接电阻为470kΩ时,振荡频率则为66kHz,当外接电阻为750kΩ时,振荡频率为50kHz。

若采用外时钟频率。

则不要外接电阻,时钟频率信号从CPI(10脚)端输入,时钟脉冲CP信号可从CPO(原文资料为CLKO)(11脚)处获得。

MC14433内部可实现极性检测,用于显示输入电压UX的正负极性;而它的过载指示(溢出)的功能是当输入电压Vx超出量程范围时,输出过量程标志OR(低有效)。

   MC14433是双斜率双积分A/D转换器,采用电压—时间间隔(V/T)方式,通过先后对被测模拟量电压UX和基准电压VREF的两次积分,将输入的被测电压转换成与其平均值成正比的时间间隔,用计数器测出这个时间间隔对应的脉冲数目,即可得到被测电压的数字值。

双积分过程可以做如下概要理解:

首先对被测电压UX进行固定时间T1、固定斜率的积分,其中T1=4000Tcp。

显然,不同的输入电压积分的结果不同(不妨理解为输出曲线的高度不同)。

然后再以固定电压VREF以及由RI,CI所决定的积分常数按照固定斜率反向积分直至积分器输出归零,显然对于上述一次积分过程形成的不同电压而言,这一次的积分时间必然不同。

于是对第二次积分过程历经的时间用时钟脉冲计数,则该数N就是被测电压对应的数字量。

由此实现了A/D转换。

积分电阻电容的选择应根据实际条件而定。

若时钟频率为66kHz,CI一般取0.1μF。

RI的选取与量程有关,量程为2V时,取RI为470kΩ;量程为200mV时,取RI为27kΩ。

     选取RI和CI的计算公式如下:

式中,ΔUC为积分电容上充电电压幅度,ΔUC=VDD-UX(max)-ΔU,ΔU=0.5V,

例如,假定CI=0.1μF,VDD=5V,fCLK=66kHz。

当UX(max)=2V时,代入上式可得RI=480kΩ,取RI=470kΩ。

MC14433设计了自动调零线路,足以保证精确的转换结果。

MC14433A/D转换周期约需16000个时钟脉冲数,若时钟频率为48kHz,则每秒可转换3次,若时钟频率为86kHz,则每秒可转换4次。

MC14433采用24引线双列直插式封装,外引线排列,参考右图的引脚标注,各主要引脚功能说明如下:

(1)端:

VAG,模拟地,是高阻输入端,作为输入被测电压UX和基准电压VREF的参考点地。

(2)端:

RREF,外接基准电压输入端。

(3)端:

UX,是被测电压输入端。

(4)端:

RI,外接积分电阻端。

(5)端:

RI/CI,外接积分元件电阻和电容的公共接点。

(6)端,C1,外接积分电容端,积分波形由该端输出。

(7)和(8)端:

C01和C02,外接失调补偿电容端。

推荐外接失调补偿电容C0取0.1μF。

(9)端:

DU,实时输出控制端,主要控制转换结果的输出,若在双积分放电周期即阶段5开始前,在DU端输入一正脉冲,则该周期转换结果将被送入输出锁存器并经多路开关输出,否则输出端继续输出锁存器中原来的转换结果。

若该端通过一电阻和EOC短接,则每次转换的结果都将被输出。

(10)端:

CPI(CLKI),时钟信号输入端。

(11)端:

CPO(CLKO),时钟信号输出端。

(12)端:

VEE,负电源端,是整个电路的电源最负端,主要作为模拟电路部分的负电源,该端典型电流约为0.8mA,所有输出驱动电路的电流不流过该端,而是流向VSS端。

(13)端:

VSS负电源端.

(14)端:

EOC,转换周期结束标志输出端,每一A/D转换周期结束,EOC端输出一正脉冲,其脉冲宽度为时钟信号周期的1/2。

(15)端:

OR,过量程标志输出端,当|UX|>VREF时,OR输出低电平,正常量程OR为高电平。

(16)~(19)端:

对应为DS4~DS1,分别是多路调制选通脉冲信号个位、十位、百位和千位输出端,当DS端输出高电平时,表示此刻Q。

~Q3输出的BCD代码是该对应位上的数据。

(20)~(23)端:

对应为Q0-Q3,分别是A/D转换结果数据输出BCD代码的最低位(LSB)、次低位、次高位和最高位输出端。

(24)端:

VDD,整个电路的正电源端

2.七段锁存-译码-驱动器CD4511

   CD4511是专用于将二-十进制代码(BCD)转换成七段显示信号的专用标准译码器,它由4位锁存器,7段译码电路和驱动器三布分组成。

(1)四位锁存器(LATCH):

它的功能是将输入的A,B,C和D代码寄存起来,该电路具有锁存功能,在锁存允许端(LE端,即LATCHENABLE)控制下起锁存数据的作用。

当LE=1时,锁存器处于锁存状态,四位锁存器封锁输入,此时它的输出为前一次LE=0时输入的BCD码;

当LE=0时,锁存器处于选通状态,输出即为输入的代码。

由此可见,利用LE端的控制作用可以将某一时刻的输入BCD代码寄存下来,使输出不再随输入变化。

(2)七段译码电路:

将来自四位锁存器输出的BCD代码译成七段显示码输出,MC4511中的七段译码器有两个控制端:

①LT(LAMPTEST)灯测试端。

当LT=0时,七段译码器输出全1,发光数码管各段全亮显示;当LT=1时,译码器输出状态由BI端控制。

②BI(BLANKING)消隐端。

当BI=0时,控制译码器为全0输出,发光数码管各段熄灭。

BI=1时,译码器正常输出,发光数码管正常显示。

上述两个控制端配合使用,可使译码器完成显示上的一些特殊功能。

(3)驱动器:

利用内部设置的NPN管构成的射极输出器,加强驱动能力,使译码器输出驱动电流可达20mA。

CD4511电源电压VDD的范围为5V-15V,它可与NMOS电路或TTL电路兼容工作。

CD4511采用16引线双列直插式封装,引脚分配见右图,真值表参见下图。

使用CD451l时应注意输出端不允许短路,应用时电路输出端需外接限流电阻。

 

3.七路达林顿驱动器阵列MC1413

   MC1413采用NPN达林顿复合晶体管的结构,因此具有很高的电流增益和很高的输入阻抗,可直接接受MOS或CMOS集成电路的输出信号,并把电压信号转换成足够大的电流信号驱动各种负载.该电路内含有7个集电极开路反相器(也称OC0门)。

MC1413电路结构和引脚如图3所示,它采用16引脚的双列直插式封装。

每一驱动器输出端均接有一释放电感负载能量的续流二极管。

本电路采用三极管代替七路达林顿驱动器阵列MC1413。

 

4.高精度低漂移能隙基准电源MC1403

   MC1403的输出电压的温度系数为零,即输出电压与温度无关.该电路的特点是:

①温度系数小;②噪声小;③输入电压范围大,稳定性能好,当输入电压从+4.5V变化到+15V时,输出电压值变化量小于3mV;④输出电压值准确度较高,y。

值在2.475V~2.525V以内;⑤压差小,适用于低压电源;⑥负载能力小,该电源最大输出电流为10mA。

MC1403用8条引线双列直插标准封装,如右图所示。

5.量程选择电路

如左图中四个电阻串联分压设计,总电阻值为10MΩ,当开关S1闭合时,为最小量程2V;当开关S2闭合时,衰减10倍,其量程为20V;当开关S3闭合时,衰减100倍,其量程为200V;当开关S3闭合时,衰减100倍,其量程为200V。

量程转换电路图

通过电阻对不通电压进行不同的分压,从而得到固定范围内的相对较小的电压输入至MC14433进行模数转换,输出至数字显示器上。

 

6.单相桥式整流滤波电路

电路为单向桥式整流电路,适用于大电压的整流。

电路TR为电流变压器,它的作用是将交流电网电压V1变成整流电路要求的电压V2=Sinwt,四支整流二极管D1~D4接成电桥的形式。

 

五、遇到的问题及解决方法

 

问题一:

数字显示器连接完成后不亮?

解决方法:

经检查发现有些导线坏损导致电路不通,还有些接口接触不良,更换了坏的导线后问题解决。

问题二:

数字显示器显示为非数字?

解决方法:

经过检查发现个别数字显示器坏损,部分线条不亮,更换了显示器后问题解决。

问题三:

连接电路完成后结果显示不正常?

解决方法:

经检查发现因为连线比较混乱,在连线过程中造成短路,致使理论结果和实际不一样,于是我们重新组装了电路,对电路进行了规范布线,从而问题得到了解决。

问题四:

测试后发现数码管显示数字亮度偏弱?

解决方法:

经检查发现有些电阻使用时直接套用了查找资料时使用的电阻,致使其实际情况和理论存在偏差,电阻过大使得电流过小,从而导致显示器亮度不够,在反复测试后更换了合适的电阻,问题解决。

 

六、心得体会

在老师布置完课题任务之时,我感觉这就是不可能的任务,因为对老师说的一无所知,感觉学了那么多元器件,了解了那么多知识,但是现在还是不知道怎么办。

虽然什么都不会,但是任务还是得做下去。

经过一周多时间的查找资料,以及在网上寻找前人的经验,终于对这些元器件有了一个大致的了解。

通过分析讨论,我们组最终确定了一个方案并进行深入探寻。

了解各个元件的性能及功能,发掘尽可能多的问题进行解决。

在试验当天,我们满怀信心开始动手自己连接电路,当时觉得既然大部分都搞懂了,连接电路应该不是什么问题,但是在连接电路的过程中却发现了不少当初讨论时没有发现的问题,致使本来认为一个小时左右的试验做了将近一天。

从中我深深认识到理论和实际之间还有很大距离,理论吃透了,在实际过程中还会遇到理论之外的问题,所以东少操作是一个很重要的环节,并且要学会在实践中发现问题,解决问题,加强自己的动手才做能力。

最后魏老师悉心询问学生试验情况,解答了同学们遇到的各类问题,感谢魏老师对试验的细心指导和帮助。

 

汇总实验电路图

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1