认识实验目的.docx

上传人:b****6 文档编号:5833907 上传时间:2023-01-01 格式:DOCX 页数:11 大小:29.04KB
下载 相关 举报
认识实验目的.docx_第1页
第1页 / 共11页
认识实验目的.docx_第2页
第2页 / 共11页
认识实验目的.docx_第3页
第3页 / 共11页
认识实验目的.docx_第4页
第4页 / 共11页
认识实验目的.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

认识实验目的.docx

《认识实验目的.docx》由会员分享,可在线阅读,更多相关《认识实验目的.docx(11页珍藏版)》请在冰豆网上搜索。

认识实验目的.docx

认识实验目的

一、认识实习目的

按照教学计划的安排,我校能源与动力工程学院能源与环境系统工程专业的学生,在学习本专业方向的理论课及其他实践性环节的教学之前,通过认识实习,了解本专业领域的现状及发展趋势。

认识实习是本专业学生的一门重要实践性课程。

是同学们将理论知识同生产实践相结合的有效途径,是增强同学们的劳动观点、群众性观点的重要过程。

通过认识实习,使我们了解和学习发电厂、热源厂等电力系统的知识,为以后专业课的学习、课程设计和毕业设计打下基础。

通过认识实习,托宽我们的知识面,增加感性认识,把所学过的知识条理化系统化,学到从书本上学不到的专业知识,并获得本专业国内外发展现状的最新信息。

更激发我们向实践学习和探索的积极性,为今后的学习和将从事的技术工作打下坚实的基础。

认识实习是与课堂教学完全不同的教学方法,在教学计划中,认识实习是课堂教学的补充。

认识实习是在教师指导下由学生自己向生产实践学习,通过现场的讲授、参观、讨论、分析等多种形式,一方面巩固在书本上学到的理论知识,另一方面,可获得在书本上不易了解和不易学到的生产现场的实际知识,使我们在实践中得到提高和锻炼。

二、认识实习内容

2013年1月5日在老师的带领下,我们参观了热源厂的各个部门的设备仪器,老师主要介绍了锅炉的种类和运行过程。

锅炉分为链条炉、沸腾炉和循环流化床炉。

今天老师主要给我们讲了链条炉。

锅炉是把燃料的化学能转变为蒸汽或热水热能的设备。

蒸汽是推动火力发电广汽轮机;和其他机械的动力,蒸汽和热水也是很多生产部门生活采暖的热源。

固定锅炉可分为电站锅炉和工业锅炉两大类。

电站锅炉是火力发电厂三大主机之一,它的容量大.蒸汽参数高,燃烧方式以室燃为主。

工业锅炉则用于为生产和采暖提供热源,它的容量小(蒸发量不大于65t/h),蒸汽参数低(压力小于3.sMPa,温度不超过450aC),在我国燃烧方式以层燃为主。

电站锅炉和工业锅炉之间投有严格的界限,电站锅炉也可生产和采暖系统供应蒸汽,小型火力发电厂也用工业锅炉的蒸汽作汽轮机盼动力。

我国现有的工业锅炉已超过35h台,它们的单机容量小,金属消耗大,运行效率低,每年消耗的燃料约占全国煤总产量的1/3。

同时,工业锅炉也是大气污染的重要根源。

因此,提高工业锅炉的效率,降低金属消耗和造价,减轻对大气的污染,提高清洁水平是锅炉工作者的重要任务。

锅炉相区别,中国把容量在65吨/时以下为工业生产供热、为建筑物供暖的锅炉称之为工业锅炉。

链条炉是机械化程度较高的一种层燃炉。

因其炉排类似于链条式履带而得名。

是工业锅炉中使用较广泛的一种炉型,在10-65t/h中等容量,甚至1-2t/h的小容量锅炉中都有采用。

链条炉是一种前饲式炉子,煤的燃烧过程是在移动中完成的,它的燃烧工况稳定,热效率较高,运行操作方便,劳动强度低,烟尘排放浓度较低。

它属于单面着火方式,运行时燃料无自身扰动,沿炉排长度方向燃料层有明显的分区。

为使燃料中的可燃物和飞灰可燃物燃尽,可以采用“二次风”。

由于着火条件不好,拨火又必须人工操作,因此它不适于烧水分很大、灰分又多、结焦性强的煤。

它的另一个缺点是金属耗量大。

链条炉采用轻型链条炉排实现机械加煤,配有鼓风机、引风机进行机械通风,并装有刮板式出渣机实现自动出渣.该系列蒸汽锅炉前后拱采用新型的节能技术炉拱.燃料自煤斗落到炉排上,进入炉膛燃烧后,火焰经过后拱折射向上通过本体两侧燃烬室折向转到前烟箱,再由前烟箱折回锅内管束,通过后烟箱进入省煤器,然后由引风机抽引通过烟道至烟囱排向大气.

  

焙烧炉由主炉和副炉组成。

主、副炉中间设有隔板,上部连通,炉膛为方形断面,主炉下部还原带为圆形筒体,底部设有气体分布板。

副炉内有10层档料板。

炉体为砌砖结构,金属外壳。

主、副炉在不同高度上,设有三排煤气烧嘴,供燃烧用。

此外,还有测温和测压装置。

沸腾锅炉的工作原理是将破碎到一定粒度的煤末,用风吹起,在炉膛的一定高度上成沸腾状燃烧。

煤在沸腾炉中的燃烧,既不是在炉排上进行的,也不是像煤粉炉那样悬浮在空间燃烧,而是在沸腾炉料床上进行的。

沸腾炉的突出优点是,对煤种适应性广,可燃烧烟煤、无烟煤、褐煤和煤矸石,它的另一个好处在于使燃料燃烧充分,从而提高燃料的利用率。

沸腾料层的平均温度一般在850一1050℃,料层很厚,相当于一个大蓄热池,其中燃料仅占5%左右,新加入的煤粒进入料层后就和温度高几十倍的灼热颗粒混合,因此能很快燃烧,因此可以用煤矸石代替。

固体燃料在炉内被向上流动的气流托起,在一定的高度范围内作上下翻滚运动,并以流态化(或称沸腾)状态进行燃烧的炉膛,又称流化床燃烧炉。

沸腾燃烧方式也用于其他的炉窑中。

沸腾燃烧方式的特点既不像在层燃炉中那样将固体燃料静止地放在炉排上燃烧;也不像在室燃炉中那样将液体、气体或磨成细粉状的固体燃料悬浮在炉膛空间中燃烧,而是把固体燃料破碎成一定粒度的粉末,使之在炉内以类似沸腾的状态燃烧。

在中国,沸腾炉用煤的粒度一般为8毫米以下。

常用沸腾炉燃烧室的典型结构包括布风系统、沸腾床、进料和排渣系统3个部分

  ①布风系统。

燃烧室底部为布风板,板上直接开孔或装许多带通风小孔的风帽。

布风板的作用是承载料层并使空气上升速度沿炉内截面分布均匀。

  ②沸腾床。

布风板上放置一定量的床料(包括固体燃料和大量的灰渣或石灰石颗粒)。

运行时,当料层中的空气达到一定上升速度时,沸腾床上的床料便从静止状态转入沸腾状态,这一风速称为临界沸腾风速。

为了保持剧烈的沸腾燃烧工况,沸腾炉正常运行时的风速要比临界沸腾风速大,使料层膨胀到一定高度。

床料沸腾高度约为静止料层的两倍,在此容积的燃料呈沸腾状态,故称为沸腾床,小颗粒则被气流带出炉外。

布置在料层中的管子称为埋管,可以垂直、水平或倾斜放置。

管内可通以水、蒸汽或空气以吸收燃料在床中燃烧所释放出来的热量,使床温保持在800~1000℃。

  ③进料和排渣系统。

一定粒度范围的燃煤从煤仓经给煤机送入料层内,燃尽的煤渣一般从溢流口排出

与一般锅炉的炉膛比较,常压沸腾炉的优点是:

①不但能烧优质煤,也能烧一般炉排炉和室燃炉不能烧的各类劣质煤;②床内埋管的传热效果很好,约为普通锅炉管子的5~10倍;③由于沸腾床燃烧温度低,烟气中NOX的生成量少,如在进料中适量加入石灰石或白云石,即可将煤中硫分脱除,使排烟中SO2的含量下降。

沸腾炉的缺点是:

①沸腾床中细颗粒燃料容易被烟气带出,所以未燃尽损失大,燃烧效率比室燃炉低;②烟气中飞灰较多,锅炉受热面容易发生磨损;③鼓风所需的送风机风压高,故耗电量大;④沸腾床内给煤和布置埋管难以均匀。

⑤烧高灰分劣质煤时,为了不使大量飞灰污染环境,必须配备高效率大容量的除灰装置。

由于以上原因,发展大容量的沸腾炉锅炉尚有困难。

循环流行化床锅炉技术是近十几年来迅速发展的一项高效低污染清洁燃烧枝术。

国际上这项技术在电站锅炉、工业锅炉和废弃物处理利用等领域已得到广泛的商业应用,并向几十万千瓦级规模的大型循环流化床锅炉发展;国内在这方面的研究、开发和应用也逐渐兴起,已有上百台循环流化床锅炉投入运行或正在制造之中。

未来的几年将是循环流化床飞速发展的一个重要时期。

锅炉采用单锅筒,自然循环方式,总体上分为前部及尾部两个竖井。

前部竖井为总吊结构,四周有膜式水冷壁组成。

自下而上,依次为一次风室、密相床、悬浮段,尾部烟道自上而下依次为高温过热器、低温过热器及省煤器、空气预热器。

尾部竖井采用支撑结构,两竖井之间由立式旋风分离器相连通,分离器下部联接回送装置及灰冷却器。

燃烧室及分离器内部均设有防磨内衬,前部竖井用敖管炉墙,外置金属护板,尾部竖井用轻型炉墙,由八根钢柱承受锅炉全部重量。

 锅炉采用床下点火(油或煤气),分级燃烧,一次风比率占50—60飞灰循环为低倍率,中温分离灰渣排放采用干式,分别由水冷螺旋出渣机、灰冷却器及除尘器灰斗排出。

炉膛是保证燃料充分燃烧的关键,采用湍流床,使得流化速度在3.5—4.5m/s,并设计适当的炉膛截面,在炉膛膜式壁管上铺设薄内衬(高铝质砖),即使锅炉燃烧用不同燃料时,燃烧效率也可保持在98—99%以上。

 

循环流化床锅炉在现代工业中的优点:

[1]

  

(1)燃料适应性广

  由于循环床炉内燃料着火、燃烧条件好,因而可以燃烧高灰、高硫、高水分、低热值、低挥发份的烟煤、无烟煤、褐煤、泥煤、煤矸石、油页岩、木材与稻壳等生物废料直至层燃锅炉排渣及造气炉渣等劣质燃料。

且煤种多变和各种燃料混合物均能适应。

在循环流化床锅炉中按重量计,燃料仅占床料的1~3%,其余是不可燃的固体颗粒,如脱硫剂、灰渣等。

因此,加到床中的新鲜煤颗粒被相当于一个“大蓄热池”的灼热灰渣颗粒所包围。

由于床内混合剧烈,这些灼热的灰渣颗粒实际上起到了无穷的“理想拱”的作用,把煤料加热到着火温度而开始燃烧。

在这个加热过程中,所吸收的热量只占床层总热容量的千分之几,因而对床层温度影响很小,而煤颗粒的燃烧,又释放出热量,从而能使床层保持一定的温度水平,这也是流化床一般着火没有困难,并且煤种适应性很广的原因所在

  

(2)燃烧效率高

  循环流化床锅炉的燃烧效率要比鼓泡流化床锅炉高,通常在98~99%范围内,可与煤粉锅炉相媲美。

循环流化床锅炉燃烧效率高是因为有下述特点:

气固混合良好;燃烧速率高;其次是飞灰及燃料多次循环燃烧。

  (3)高效脱硫、氮氧化物(NOX)排放低

  由于炉内温度水平对脱硫有利,且脱硫剂多次循环,炉内扰动很大,与烟气接触时间长,这样循环流化床燃烧与鼓泡流化床燃烧相比脱硫性能大大改善。

当钙硫比为1.5~2.0时,脱硫率可达85~90%。

而鼓泡流化床锅炉,脱硫效率要达到85~90%,钙硫比要达到3~4,钙的消耗量大一倍。

氮氧化物排放低是循环流化床锅炉另一个非常吸引人的特点。

运行经验表明,循环流化床锅炉的NOX排放范围为50~150ppm或40~120mg/MJ。

循环流化床锅炉NOX排放低是由于以下两个原因:

一是低温燃烧,此时空气中的氮一般不会生成NOX;二是分段燃烧,抑制燃料中的氮转化为NOX,并使部分已生成的NOX得到还原。

与煤粉燃烧锅炉相比,不需采用尾部脱硫脱硝装置,投资和运行费用比配脱硫装置的煤粉炉低15~20%。

  (4)燃烧强度高

  炉膛单位截面积的热负荷高是循环流化床锅炉的另一主要优点。

其截面热负荷约为3.5~4.5MW/m2,接近或高于煤粉炉。

同样热负荷下鼓泡流化床锅炉需要的炉膛截面积要比循环流化床锅炉大2~3倍

  (5)负荷调节范围大,负荷调节快

  当负荷变化时,只需调节给煤量(调节流化床料层高度)、空气量和物料循环量,不必像鼓泡流化床锅炉那样采用分床压火技术。

也不象煤粉锅炉那样,低负荷时要用油助燃,维持稳定燃烧。

一般而言,循环流化床锅炉的负荷调节比可达(3~4):

1,可以在40~50%的低负荷下稳定运行。

负荷调节速率也很快,一般可达每分钟4%。

  (6)易于实现灰渣综合利用

  循环流化床燃烧过程属于低温燃烧,同时炉内优良的燃尽条件使得锅炉的灰渣含炭量低(含炭量小于1%),属于低温烧透,易于实现灰渣的综合利用,如作为水泥掺和料或做建筑材料。

同时低温烧透也有利于灰渣中稀有金属的提取。

  (7)燃料预处理系统简单

  循环流化床锅炉的给煤粒度一般小于13mm,因此与煤粉锅炉相比,燃料的制备破碎系统大为简化

(8)燃烧调整范围大,负荷调整稳,升降速度快。

接下来老师带领我们参观了换热器,换热器的种类可分为间壁式、混合式和蓄热式。

换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

在石油、化工、轻工、制药、能源等工业生产中,常常用作把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。

随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。

换热器的应用广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。

它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。

换热器既可是一种单元设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如氨合成塔内的换热器。

换热器是化工生产中重要的单元设备,根据统计,热交换器的吨位约占整个工艺设备的20%有的甚至高达30%,其重要性可想而知。

间壁式换热器 :

这种换热器是在容器外壁安装夹套制成,结构简单;但其加热面受容器壁面限制,传热系数也不高.为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器.当夹套中通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或其它增加湍动的措施,以提高夹套一侧的给热系数.为补充传热面的不足,也可在釜内部安装蛇管.夹套式换热器广泛用于反应过程的加热和冷却。

混合式换热器:

  混合式热交换器是依靠冷、热流体直接接触而进行传热的,这种传热方式避免了传热间壁及其两侧的污垢热阻,只要流体间的接触情况良好,就有较大的传热速率。

故凡允许流体相互混合的场合,都可以采用混合式热交换器,例如气体的洗涤与冷却、循环水的冷却、汽-水之间的混合加热、蒸汽的冷凝等等。

它的应用遍及化工和冶金企业、动力工程、空气调节工程以及其它许多生产部门中。

 

蓄热式换热器:

  蓄热式换热器用于进行蓄热式换热的设备。

内装固体填充物,用以贮蓄热量。

一般用耐火砖等砌成火格子(有时用金属波形带等)。

换热分两个阶段进行。

第一阶段,热气体通过火格子,将热量传给火格子而贮蓄起来。

第二阶段,冷气体通过火格子,接受火格子所储蓄的热量而被加热。

这两个阶段交替进行。

通常用两个蓄热器交替使用,即当热气体进入一器时,冷气体进入另一器。

常用于冶金工业,如炼钢平炉的蓄热室。

也用于化学工业,如煤气炉中的空气预热器或燃烧室,人造石油厂中的蓄热式裂化炉。

2013年1月8日我们参观了呼和浩特热电厂,首先参观了汽机房,然后相继参观了参观锅炉房,集控室。

通过这次参观,我对我们的专业和未来工作情况有了进一步的了解,更激发了对知识的渴望。

热电厂由于客观事实不可能与大型发电厂在同等起路线上“竞价上网”的。

热电厂装机容量受热负荷大小、性质等制约,机组规模要比目前火电厂的主力机组小很多。

热电厂由于既发电又供热,锅炉容量大于同规模火电厂。

热电厂必须比一般火电厂多增设锅炉容量以备用,水处理量也大。

热电厂必须靠近热负荷中心,往往又是人口密集区的城镇中心,其用水、征地、拆迁、环保要求等均大大高于同容量火电厂,同时还建热力管网。

  在发电的同时,还利用汽轮机的抽汽或排汽为用户供热的火电厂。

一般发电厂都采用凝汽式机组,只生产电能向用户供电。

工业生产和人们生活用热则由特设的工业锅炉及采暖锅炉房单独供应。

这种能量生产方式称为热、电分产。

在热电厂中则采用供热式机组,除了供应电能以外,同时还利用作过功(即发了电)的汽轮机抽汽或排汽来满足生产和生活上所需热量。

这种能量生产方式称为热电联产。

图1所示为采用背压式供热机组的热电联产热力系统;图2所示为采用抽汽式供热机组的热电厂的热力系统。

这种电厂中只有抽汽供热部分才是热电联产,而凝汽发电部分则不是。

可见抽汽式供热机组实质上是背压式供热机组和凝汽式发电机组的组合。

 以热电联产为基础的热电厂,其运行特点与许多因素有关,如热负荷特性、供热机组形式、连接电网的特性等。

  在装有背压式供热机组的热电厂中,其运行特点是:

  ①生产的热量与电量之间相互制约,不能独立调节。

一般是按热负荷要求来调节电负荷。

  ②热负荷变化时,电功率随之变化,难以同时满足热负荷和电负荷要求。

当满足不了电负荷时,就要依靠电力系统的补偿容量来承担热电厂发电不足的电量。

  在装有抽汽、凝汽式供热机组的热电厂中,由于机组相当于背压式和凝汽式机组的组合,所以它的运行特点是:

  ①热、电生产有一定的自由度,在规定范围内热、电负荷可以各自独立调节。

所以它对热、电负荷变化适应性较大。

  ②双抽汽式供热机组对工业用热、采暖及电负荷之间的独立调节范围更大,所以它对热、电负荷变化的适应性更强。

  在装有背压式和抽汽式供热机组的热电厂中,其运行特点是在冬季采暖期间,使背压式机组投入运行,而在夏季时期则投入抽汽式机组运行,并停用背压式机组。

这样可以提高热电厂的运行经济性。

  在装有抽汽式供热机组和工业锅炉的热电厂中,其运行特点除具有抽汽式供热机组的运行特点外,还可以把工业锅炉投入运行,以应付尖峰热负荷的需要。

电厂的主要设备:

1、锅炉

锅炉是火力发电厂的三大主要设备之一,他的作用是将水变成高温高压的蒸汽。

锅炉是进行燃料燃烧、传热和使水汽化三种过程的总和装置。

我们先后认识并且初步了解了普通的锅炉,火电厂中锅炉完成就是通过燃烧,把燃料的化学能转换成热能的能量转换过程,锅炉机组的产品就是高温高压的蒸汽。

在锅炉机组中的能量转换包括三个过程:

燃料的燃烧过程、传热过程和水的汽化过程。

燃料和空气中的氧,在锅炉燃烧室中混合,氧化燃烧,生成高温烟气,这个过程就燃烧过程。

高温烟气通过锅炉的各个受热面传热,将热能传给锅炉的工质——水。

水吸热后汽化变成饱和蒸汽,饱和蒸汽进一步吸热变成高温的过热蒸汽,这就是传热与水的汽化过程。

(1)汽水系统:

给水加热、蒸发、过热的整个过程中的设备。

由省煤器、汽包、下降管、水冷壁、过热器、再热器等设备组成。

(2)风烟系统:

风经过加热,与燃料燃烧生成烟气,烟气放热,排入大气整个过程经过的设备。

(3)制粉系统:

原煤磨制成煤粉,再送入粉仓,炉膛整个过程中经过的设备。

主要部件有磨煤机、给煤机、煤粉分离器等。

锅炉本体设备结构:

(1)汽包的结构和布置方式

 汽包(亦称锅通)是自然循环及强制循环锅炉最终要的受压组件,无汽包则不存在循环回路。

汽包的主要作用有:

是工质加热、蒸发、过热三个过程的连接枢纽,用它来保证过路正常的水循环。

汽包内部装有汽水分离器及连续排污装置,用以保证锅炉正常的水循环。

存有一定的水量,因而具有蓄热能力,可缓和气压的变化速度,有利于锅炉运行调节。

(2)下降管,炉水泵,定期排污

汽包底部焊有5根下降管管接头,下降管安装在汽包最底部,其目的是使下降管入口的上部有最大的水层高度,有利于下降管进口处工质汽化而导致下降管带汽。

(3)水冷壁的结构,管径,布置方式

 炉膛四周炉墙上敷设的受热面通常称为水冷壁。

中压自然循环锅炉的水冷壁全部都是蒸发受热面。

高压、超高压和亚临界压力锅炉的水冷壁主要是蒸发受热面,在炉膛的上部常布置有辐射式过热器,或辐射式再热器。

在直流锅炉中,水冷壁既是水加热和蒸发的受热面,又是过热器受热面,但水冷壁仍然主要是蒸发受热面。

(4)省煤器和空气预热器的结构和布置方式

省煤器和空气预热器通常布置在锅炉对流烟道的最后或对流烟道的下方。

进入这些受热面的烟气温度较低,故通常把这两个受热面称为尾部受热面或低温受热面。

省煤器使利用锅炉尾部烟气的热量来加热给水的一种热交换装置。

他可以降低排烟温度,提高锅炉效率,节省燃料。

由于给水进入锅炉受热面之前,先在省煤器中加热,这样可以减少了水在蒸发受热面内的吸热量,采用省煤器可以取代部分蒸发受热面。

而且,省煤器中的工质是水,其温度要比给水压力下的饱和温度要低得多,加上在省煤器中工质是强制流动,逆流传热,传热系数较高。

此外,给水通过省煤器后,可使进入汽包的给水温度提高,减少了给水与汽包壁之间的温差,从而降低了汽包的热应力。

因此,省煤器的作用不仅是省煤,实际上已成为现代锅炉中不可缺少的一个组成部件。

空气预热器不仅能吸收排烟中的热量,降低排烟温度,从而提高锅炉效率;而且由于空气的余热,改善了燃料的着火条件,强化了燃烧过程,减少了不完全燃烧热损失,这对于燃用难着火的无烟煤来说尤为重要。

使用预热空气,可使炉膛温度提高,强化炉膛辐射热交换,使吸收同样辐射热的水冷壁受热面可以减少。

较高温度的预热空气送到治煤粉系统作为干燥剂。

因此,空气预热器也成为现代大型锅炉机组中不可缺少的重要组成部件。

2、汽轮机

 汽轮机的主要用途是作为发电用的原动机。

汽轮机必须与锅炉、电机、以及凝汽器、加热器、泵等机械设备组成成套装置,共同工作。

具有一定压力和温度的蒸汽来自锅炉,经主气阀和调节气阀进入汽轮机内,一次流过一系列环形安装的喷嘴栅和动叶栅而膨胀做功,将其热能转换成推动汽轮机转子旋转的机械功,通过联轴器驱动其他机械,这里指发电机做功。

在火电厂中,膨胀做工后的蒸汽有汽轮机排气部分被引入冷凝器,想冷却水放热而凝结。

凝结水再经泵输送至加热器中加热后作为锅炉给水,循环工作。

汽轮机按工作原理分为两类:

冲动式汽轮机和反动式汽轮机。

(1)冲动式汽轮机。

主要有冲动级组成,在级中蒸汽基本上再喷嘴栅中膨胀,在动叶栅中只有少量膨胀。

 

(2)反动式汽轮机。

主要有反动级组成,蒸汽在汽轮机的静叶栅和动叶栅中都有相当适度的膨胀。

转子静子等部分组成及功能

汽轮机的转动部分称为转子,他是汽轮机最重要的部件之一,担负着工质能量转换和传递扭矩的任务。

转子的工作条件相当复杂,他处于高温工质中,并以高速旋转,因此他承受着叶片、叶轮、主轴本身质量离心力所引起的巨大盈利以及由于温度分布不均匀引起的热应力。

另一方面,蒸汽作用在动叶栅上的力矩,通过转子的叶轮、主轴和联轴器传递给电机。

 汽缸即汽轮机的外壳。

其作用是将汽轮机的通流部分与大气隔开。

以形成蒸汽热能转换为机械能的而封闭气室。

气缸内装有喷嘴(静叶)、隔板、隔板套(静叶持环)、气封等部件。

他们统称为静子。

汽轮机运转时,高速旋转,汽缸、隔板等静体固定不动,因此转子与静子之间需要留有适当的空隙,从而不相互碰撞。

然而间隙的存在就要导致露气,这样不仅会降低机组效率,还会影响机组的安全运行。

为了减少蒸汽泄露和防止空气漏人,需要有密封装置,通常称为气封。

气封按其安装位置的不同,可分为流通部分气封、隔板气封、轴端气封。

反动式汽轮机还装有高中亚平衡活塞气封和低压平衡活塞气封。

凝汽器是用循环冷却水使汽轮机排出的蒸汽凝结,在汽机排汽空间建立并维持所需的真空,并回收纯净的凝结水供给锅炉给水,提高了机组的热效率。

高加壳体为全焊接结构,由钢板焊接组成。

为了便于壳体的拆移,安装了吊耳和壳体滚轮,并使其运行时自由膨胀。

为防止壳体变形,每台有过热蒸汽冷却段加热器均设置护罩和档板。

所有加热器的蒸汽入口和疏水入口处(在壳体内)均装有不锈钢防冲板,以防管子受汽水直接冲击和引起振动和腐蚀。

 高压加热器由过热蒸汽冷却段、凝结段和疏水冷却段组成。

过热蒸汽冷却段是利用从汽轮机抽出的过热蒸汽的一部分显热来提高给水温度,位于给水出口流程侧,并有包壳板密闭。

过热蒸汽在一组隔板的导向下以适当的线速度和质量速度均匀的流过管子,并使蒸汽留有足够的过热度以保证蒸汽离开该段时呈干燥状态,这样,当蒸汽离开该段进入凝结段时,可防止湿蒸汽冲蚀和水蚀的损害。

凝结段是利用蒸汽冷凝时的潜热加热给水,一组隔板使蒸汽沿着加热器长度方向均匀的分布,起支撑传热管作用。

进入该段的蒸汽,根据气体冷却原理,自动平衡,直至由饱和蒸汽冷凝成饱和的凝结水,并汇集在加热器的尾部或底部,收聚非凝结气体的排气管必须置于管束最低压力处以及壳体内容易聚非冷凝气体处。

非冷凝气体的集聚影响了有效传热,因而降低了效率并造成腐蚀。

疏水冷却段是把离开凝结段的疏水的热量传给进入加热器的给水,而使疏水温度降至饱和温度以下。

疏水冷却段位于给水进口流程侧,并有包壳板密闭。

疏水温度降低后,当流向下一个压力较低的加热器时,减弱了在管道内发生汽化的趋势。

包壳板在内部与加热器壳侧的总体部分隔开,从端板和吸入口或进口端保持一定的疏水水位,使该段密闭。

疏水进入该段,由一组隔板引导流动,从疏水出口管输出。

3、加热器

编织型高温电加热器,在多股电阻丝绞线外缠绕有玻璃纤维增强耐火纤维层,在耐火纤维层外编织有金属丝增强耐

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1