硫化反应过程.docx

上传人:b****5 文档编号:5756638 上传时间:2023-01-01 格式:DOCX 页数:13 大小:80.74KB
下载 相关 举报
硫化反应过程.docx_第1页
第1页 / 共13页
硫化反应过程.docx_第2页
第2页 / 共13页
硫化反应过程.docx_第3页
第3页 / 共13页
硫化反应过程.docx_第4页
第4页 / 共13页
硫化反应过程.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

硫化反应过程.docx

《硫化反应过程.docx》由会员分享,可在线阅读,更多相关《硫化反应过程.docx(13页珍藏版)》请在冰豆网上搜索。

硫化反应过程.docx

硫化反应过程

硫化反应过程

硫化反应过程是化学反应过程,它包含橡胶分子与硫化剂及其它配合剂之间发生的一系列化学反应以及在形成网状结构时伴随发生各种反应,在这众多的反应中,仍以橡胶分子与硫化剂之间的反应为主,它是生成大分子网状结构的基本反应,对于大多数含有有机促进剂(硫磺)的硫化体系的胶料来说,其硫化反应历程可大致如下:

促进剂活性剂

↓硫磺

(1)诱导阶段促进剂多硫化合物

(T10相同)↓橡胶

含橡胶分子链的硫化合物

↓分解

自由基(或离子)

(2)交联反应阶段↓橡胶

交联

(3)网构形成阶段交联键重排,裂解,主键改性

网构成熟阶段硫化胶↓

以上看出硫化反应历程大体分为三个阶段:

第一阶段为诱导阶段,在这个阶段中首先是硫磺分子和促进剂体系之间反应生成一种活性更大的中间化合物,然后进一步引发橡胶分子链,形成可交联的自由基(或离子)与橡胶分子链之间产生连锁反应,生成交联链,第三阶段为网构形成阶段,在这一阶段的前期交联反应已趋于完成,产生的交联链发生重排和裂解等反应,在这一阶段的后期交联反应已基本停止,随之而发生的是交联链重排和热裂解等反应,最后得到网构稳定的硫化胶.

硫化历程图:

在硫化过程中,橡胶的各种性能随着硫化时间而变化,若将橡胶的某一性能变化与时间作曲线图,则可从曲线图中可以表现出整个硫化历程,所以这种曲线图叫做硫化历程图.最常见的硫化历程图如图一所示:

图中的曲线,前半部分由门尼焦烧曲线组成,后半部则由扯断强度曲线组成,橡胶的硫化历程可分为四个阶段,即焦烧阶段,热硫化阶段,平坦硫化阶段,过硫化阶段.

焦烧阶段---图中的AB段

它是指热硫化前延迟作用时间,相当于前述的硫化反应中的诱导期,焦烧时间的长短,是由胶料的配方所决定的,其中主要受促进剂的影响,而操作过程中的热历史也是一个重要的因素.

由于橡胶具有热积累的特性,所以胶料的实际焦烧时间,包括操作焦烧时间A1和剩余焦烧时间A2两部分,操作焦烧时间是指在橡胶加工过程中由于热效应所消耗掉的焦烧时间,它取决于加工程度,(如胶料翻炼次数,热炼程度及压延压出等),剩余焦烧时间是指胶料在模型加热时保持流动性的时间,在操作焦烧时间和剩余焦烧时间之间没有固定的阶限,它随胶料操作和放条件不同而变化,如果一个胶料经历的加工越多,它占去的焦烧时间就越多如图A1’所示,则剩余焦烧时间就越小如图中A2’所示,胶料在模型中流动时间越少,因此一般胶料都应避免经受反复多次的机械作用.

热硫化阶段---如图中的BC段

这一阶段相当于硫化反应中的交联阶段,在这一阶段中胶料进行着交联反应,逐渐生成网构,于是橡胶的弹性和抗张性能急剧上升,热硫化时间的长短是由交联配方所决定的,它是交联固有的,常作为恒量每种胶料硫化反应进行快慢的标志.

平坦硫化阶段---如图中的CD段

相当于硫化反应中网构,成熟期的前半期,这时交联反应已趋于完成,反应速度已缓和下来,随之而发生交联键的重排,热裂解等反应,因此胶料的抗张性能曲线出现平坦区,平坦硫化时间的长短也决定于配方,(主要是促进剂及防老剂),由于在这一阶段中硫化保持有最佳性能,所以常作为取得产品质量的硫化阶段,为通常选取正硫化时间的范围.

过硫化阶段----D后面部分

这一段相当于硫化反应中的网构成熟期的后半期,在这一阶段中主要是交联键重排作用,以及交联键和键段热裂解的反应,因此胶料的抗张性能显著下降.

在硫化历程图中,从胶料开始加热时算起至出现平坦期为止所经过的时间称为产品硫化时间,也就是通常所说的”正硫化时间”,它等于焦烧时间与热硫化时间之和,但是由于焦烧时间有一部分为操作过程所消耗,所以实际上胶料在模型内加热硫化只有图上B1的时间,所以我们做的每批胶料的剩余焦烧时间是会有波动的,因此每批胶料的热硫化时间也会有所波动,其波动范围在B1和B2之间.

二.硫化的定义

线性的高分子在物理或化学作用下,形成三维网状体型结构的过程。

实际上就是把塑性的胶料转变成具有高弹性橡胶的过程。

三.硫化历程及硫化参数

(一)硫化历程

硫化历程是橡胶大分子链发生化学交联反应的过程,包括橡胶分子与硫化剂及其他配合剂之间发生的一系列化学反应以及在形成网状结构时伴随发生的各种副反应。

可分为三个阶段:

1.诱导阶段硫化剂、活性剂、促进剂之间的反应,生成活性中间化合物,然后进一步引发橡胶分子链,产生可交联的自由基或离子。

2.交联反应阶段可交联的自由基或离子与橡胶分子链之间产生连锁反应,生成交联键。

3.网构形成阶段交联键的重排、短化,主链改性、裂解。

(二)硫化历程图

图2-1硫化历程图

根据硫化历程分析,可将硫化曲线分成四个阶段,即焦烧阶段、热硫化阶段、平坦硫化阶段和过硫化阶段。

1.焦烧阶段

2.热硫化阶段

3.平坦硫化阶段

4.过硫化阶段

胶料硫化在过硫化阶段,可能出现三种形式:

(三)硫化参数

1.T10:

胶料从加热开始至转矩上升到最大转矩的10%所需要的时间。

M10=ML+(MH-ML)×10%

2.诱导期(焦烧期):

从胶料放入模具至出现轻微硫化的整个过程所需要的时间叫硫化诱导期,又称为焦烧时间。

诱导期反应了胶料的加工安全性。

诱导期短,加工安全性差;诱导期太长,会降低生产效率。

3.焦烧:

胶料在存放和加工过程中出现的早期硫化现象。

4.工艺正硫化时间:

胶料从加热开始,至转矩上升到最大转矩的90%时所需要的时间。

M90=ML+(MH-ML)×90%

5.理论正硫化时间:

交联密度达到最大程度时所需要的时间。

6.硫化返原:

如果胶料再继续硫化就会使交联结构产生降解,性能下降,这种现象就称为硫化返原。

四.理想的硫化曲线

较为理想的橡胶硫化曲线应满足下列条件:

(1)硫化诱导期要足够长,充分保证生产加工的安全性;

(2)硫化速度要快,提高生产效率,降低能耗;

(3)硫化平坦期要长(以保证硫化加工中的安全性,减少过硫危险,以及保证制品各部位硫化均匀一致)。

五.橡胶在硫化过程中结构及性能的变化

(一)结构的变化

线性的大分子硫化后不同程度地形成空间网状结构。

图2-2硫化前后橡胶分子结构示意图

(二)性能的变化

拉伸强度、定伸应力、弹性等性能达到峰值后,随硫化时间再延长,其值出现下降;

伸长率、永久变形等性能随硫化时间延长而渐减,当达到最低值后再继续硫化又缓慢上升;

耐热性、耐磨性、抗溶胀性等都随硫化时间的增加而有所改善,并在最佳硫化阶段为最好。

一.硫黄的品种及用量

(一)品种

硫黄一般有结晶性和非结晶性两种,常用的一般为结晶性硫黄。

1.粉末硫黄

硫黄在橡胶中的溶解度随温度升高而增大,但温度降低时,硫黄会从橡胶中结晶析出,形成“喷霜”现象。

喷霜:

硫黄在胶料中的配合量超过了它的溶解度达到过饱和,就从胶料内部析出到表面上,形成一层白霜,这种现象叫喷霜。

喷霜的不利影响:

(1)破坏了硫黄在胶料中分散的均匀性;

(2)使胶料表面粘着性下降,给加工带来困难。

避免喷霜应采取的措施:

(1)应在尽可能低的温度下加入硫黄;

(2)使用不溶性硫黄;(3)使用合理的加料顺序;(4)减少硫黄用量,增大促进剂用量。

2.不溶性硫黄

3.胶体硫黄

4.沉降硫黄

(二)硫黄的用量

硫黄在胶料中的用量应根据具体橡胶制品的性质而定。

橡胶制品根据其性质特征可分为三类:

软质橡胶(如轮胎、胶管、胶带、胶鞋等);硫黄用量一般为0.2~5.0份。

半硬质橡胶(如胶辊、纺织皮辊等);硫黄用量一般为8~10份。

硬质橡胶(如蓄电池壳、绝缘胶板等);硫黄用量一般为25~40份。

二.硫黄的裂解和活性

硫在自然界中主要以菱形硫(Sα-硫)和单斜晶硫(Sβ-硫)的形式存在,前者作为硫化剂使用。

硫的元素形式为S8,一个分子中有8个硫,形成一种叠环,这种环状的硫黄分子的稳定性较高,不易反应,为使硫易于反应,必须使硫环裂解,硫环获得能量后分解,裂解的方式可能是均裂成自由基,也可能是异裂成离子。

硫环裂解后,如果是离子型,则将以离子型机理与橡胶分子链反应;如果是游离基型,则以游离基型机理与橡胶分子链反应。

五.硫黄硫化胶的结构与性能

1.结构

硫黄硫化橡胶时,硫黄在橡胶大分子间形成单S键、双硫键或多硫键,同时还生成大分子内部的单硫键或多硫键,但以多硫交联键最多。

2.性能

多硫交联键不稳定,易分解重排,所以硫化胶的耐热性较差。

促进剂:

就是指能降低硫化温度、缩短硫化时间、减少硫黄用量,又能改善硫化胶的物理性能的物质。

活性剂:

一般不直接参与硫黄与橡胶的反应,但对硫化胶中化学交联键的生成速度和数量有重要影响的物质(如氧化锌、硬质酸等)。

一.促进剂的分类

常用促进剂的分类方法有以下几种:

1.按促进剂的结构分类

按促进剂的化学结构可分为八大类,即噻唑类(M、DM)、次磺酰胺类(CZ、NOBS、DZ)、

秋兰姆类(TMTD、TMTM)、硫脲类(NA-22)、二硫代氨基甲酸盐类(ZDMC、ZDC)、醛胺类(H)、胍类(D)、黄原酸盐类(ZIX)等。

2.按PH值分类

按照促进剂的呈酸、碱或中性将促进剂分为酸性、碱性和中性促进剂。

酸性促进剂:

噻唑类、秋兰姆类、二硫代氨基甲酸盐类、黄原酸盐类。

中性促进剂:

次磺酰胺类、硫脲类

碱性促进剂:

胍类、醛胺类

3.按促进速度分类

国际上习惯以促进剂M对NR的硫化速度为准超速,作为标准来比较促进剂的硫化速度。

M快的属于超速或超超速级,比M慢的属于慢速或中速级。

慢速级促进剂:

H、NA-22

中速级促进剂:

D

准速级促进剂:

M、DM、CZ、DZ、NOBS

超速级促进剂:

TMTD、TMTM

超超速级促进剂:

ZDMC、ZDC

4.按A、B、N(酸碱性)+数字1、2、3、4、5(速级)分类:

5.肯伯曼分类法

根据促进剂的促进原理可分为:

下列符号表示与碳键合的三个原子的种类,可作为从促进剂的化学结构推测促进效能的大致标准。

NSS、NNN、NNS、SSO、NSO、SSS

二.常用促进剂的结构与特点

1.噻唑类

 

作用特性:

1)属于酸性、准速级促进剂,硫化速度快;M焦烧时间短,易焦烧;DM比M好,焦烧时间长,生产安全性好。

2)硫化曲线平坦性好,过硫性小,硫化胶具有良好的耐老化性能,应用范围广。

配合特点:

1)被炭黑吸附不明显,宜和酸性炭黑配合,槽黑可以单独使用,炉黑要防焦烧。

2)无污染,可以用作浅色橡胶制品。

3)有苦味,不宜用于食品工业。

4)DM、M对CR有延迟硫化和抗焦烧作用,可作为CR的防焦剂,也可用作NR的塑解剂。

2.次磺酰胺类

作用特性:

次磺酰胺类促进剂是一种酸、碱自我并用型促进剂,其特点如下:

1)焦烧时间长,硫化速度快,硫化曲线平坦,硫化胶综合性能好;

2)宜与炉法炭黑配合,有充分的安全性,利于压出、压延及模压胶料的充分流动性;

3)适用于合成橡胶的高温快速硫化和厚制品的硫化;

4)与酸性促进剂(TT)并用,形成活化的次磺酰胺硫化体系,可以减少促进剂的用量。

一般说来,次磺酰胺类促进剂诱导期的长短与和胺基相连基团的大小、数量有关,基团越大,数量越多,诱导期越长,防焦效果越好。

如DZ>NOBS>CZ。

3.秋兰姆类

一般结构式为:

作用特点:

1)属超速级酸性促进剂,硫化速度快,焦烧时间短,应用时应特别注意焦烧倾向。

一般不单独使用,而与噻唑类、次磺酰胺类并用;

2)秋兰姆类促进剂中的硫原子数大于或等于2时,可以作硫化剂使用,用于无硫硫化时制作耐热胶种。

硫化胶的耐热氧老化性能好。

4.二硫代氨基甲酸盐类

一般通式如下:

 

作用特点:

属超超速级酸性促进剂,硫化速度比秋兰姆类还要快,诱导期极短,适用于室温硫化和胶乳制品的硫化,也可用于低不饱和度橡胶如IIR、EPDM的硫化。

5.胍类

作用特点:

1)碱性促进剂中用量最大的一种,硫化起步慢,操作安全性好,硫化速度也慢。

2)适用于厚制品(如胶辊)的硫化,产品易老化龟裂,且有变色污染性。

3)一般不单独使用,常与M、DM、CZ等并用,既可以活化硫化体系又克服了自身的缺点,只在硬质橡胶制品中单独使用。

6.硫脲类

结构通式为:

作用特点促进剂的促进效能低,抗焦烧性能差,除了CR、CO、CPE用于促进和交联外,其它二烯类橡胶很少使用。

其中NA—22是CR常用的促进剂。

7.醛胺类

是醛和胺的缩聚物,主要品种是六亚甲基四胺,简称促进剂H,是一种弱碱性促进剂,促进速度慢,无焦烧危险。

一般与其它促进剂如噻唑类等并用。

其它醛胺类促进剂还有乙醛胺,也称AA或AC,也是一种慢速促进剂。

8.黄原酸盐类

作用特性是一种酸性超超速级促进剂,硫化速度比二硫代氨基甲酸盐还要快,除低温胶浆和胶乳工业使用外,一般都不采用。

其代表产品为异丙基黄原酸锌(ZIX)。

三.促进剂的并用

1.A/B型并用体系称为互为活化型,活化噻唑类硫化体系,并用后促进效果比单独使用A型或B型都好。

常用的A/B体系一般采用噻唑类作主促进剂,胍类(D)或醛胺类(H)作副促进剂。

采用A/B并用体系制备相同机械强度的硫化胶时,优点是促进剂用量少、促进剂的活性高,硫化温度低、硫化时间短,硫化胶的性能(抗张、定伸、耐磨性)好。

克服单独使用D时老化性能差、制品龟裂的缺点。

2.N/A、N/B并用型活化次磺酰胺硫化体系,它是采用秋兰姆(TMTD)、胍类(D)为第二促进剂来提高次磺酰胺的硫化活性,加快硫化速度。

并用后体系的焦烧时间比单用次磺酰胺短,但比DM/D体系焦烧时间仍长得多,且成本低,缺点是硫化平坦性差。

3.A/A并用型:

称为相互抑制型。

主要作用是降低体系的促进活性。

其中主促进剂一般为超速或超超速级,焦烧时间短;另一A型能起抑制作用,改善焦烧性能。

但在硫化温度下,仍可充分发挥快速硫化作用。

如ZDC单用时,焦烧时间为3.5分钟,若用ZDC与M并用,焦烧时间可延长到8.5分钟。

与A/B并用体系相比,A/A并用体系的硫化胶的抗张强度低,伸长率高,多适用于快速硫化体系。

四.机促进剂的硫黄硫化作用机理

根据反应特点,起决定性作用的主要反应可以分为四个主要阶段:

1.主要反应阶段

(1)硫黄硫化体系各组分间相互作用生成活性中间化合物,包括生成络合物,主要的中间化合物是事实上的硫化剂。

(2)活性中间化合物与橡胶相互作用,在橡胶分子链上生成活性的促进剂—硫黄侧挂基团。

(3)橡胶分子链的侧挂基团与其它橡胶分子相互作用,形成交联键。

(4)交联键的继续反应。

这几个阶段可用硫化流程图来表示。

五.硫载体硫化机理

硫载体又称硫给予体,是指分子结构中含硫的有机或无机化合物,在硫化过程中能析出活性硫,参与交联过程,所以又称无硫硫化。

硫载体的主要品种有秋兰姆、含硫的吗啡啉衍生物、多硫聚合物、烷基苯酚硫化物。

常用的是秋兰姆类中的TMTD、TETD、TRA等和吗啡啉类衍生物中的DTDM、MDB等。

化学结构和含硫量能影响硫化特性。

六.氧化锌和硬脂酸的作用

氧化锌和硬脂酸在硫黄硫化体系中组成了活化体系,主要功能为:

1.活化硫化体系

2.提高硫化胶的交联密度

3.提高硫化胶的耐老化性能

七.防焦剂的作用

目前使用的防焦剂的品种主要是硫氮类。

1970年,美国孟山都公司开发N—环己基硫代邻苯二甲酰亚胺(PVI或称CTP)以来,由于其防焦效果明显,卫生安全性好等,从而使PVI成为应用最多的防焦剂。

其优点是不影响硫化胶的结构和性能,硫化诱导期的长短与用量呈线性关系,生产容易控制。

虽然价格较高,但用量较小,还是比较经济的。

其它防焦剂还有有机酸如水杨酸、邻苯二甲酸酐(PA)和亚硝基化合物如NDPA等。

一.普通硫黄硫化体系(CV)

普通硫黄硫化体系,是指二烯类橡胶的通常硫黄用量范围的硫化体系。

对普通硫黄硫化体系(CV),对NR,一般促进剂的用量为0.5~0.6份,硫黄用量为2.5份。

普通硫黄硫化体系得到的硫化胶网络中70%以上是多硫交联键(—Sx—),具有较高的主链改性。

特点:

硫化胶具有良好的初始疲劳性能,室温条件下具有优良的动静态性能,最大的缺点是不耐热氧老化,硫化胶不能在较高温度下长期使用。

二.有效硫化体系(EV)

一般采取的配合方式有两种:

1.高促、低硫配合:

提高促进剂用量(3~5份),降低硫黄用量(0.3~0.5份)。

促进剂用量/硫黄用量=3~5/0.3~0.5≥6

2.无硫配合:

即硫载体配合。

如采用TMTD或DTDM(1.5~2份)。

特点:

1.硫化胶网络中单S键和双S键的含量占90%以上;硫化胶具有较高的抗热氧老化性能;

2.起始动态性能差,用于高温静态制品如密封制品、厚制品、高温快速硫化体系。

三.半有效硫化体系(SEV)

为了改善硫化胶的抗热氧老化和动态疲劳性能,发展了一种促进剂和硫黄的用量介于CV和EV之间的硫化体系,所得到的硫化胶既具有适量的多硫键,又有适量的单、双硫交联键,使其既具有较好的动态性能,又有中等程度的耐热氧老化性能,这样的硫化体系称为半有效硫化体系(SEV)。

用于有一定的使用温度要求的动静态制品。

一般采取的配合方式有两种:

1.促进剂用量/硫用量=1.0/1.0=1(或稍大于1);

2.硫与硫载体并用,促进剂用量与SEV中一致。

四.高温快速硫化体系

随着橡胶工业生产的自动化、联动化,高温快速硫化体系被广泛采用,如注射硫化、电缆的硫化等。

所谓高温硫化是指温度在180~240℃下进行的硫化。

一般硫化温度每升高10℃,硫化时间大约可缩短一半,生产效率大大提高。

1.高温硫化体系配合的原则:

1).选择耐热胶种为了减少或消除硫化胶的硫化返原现象,应该选择双键含量低的橡胶。

2).采用有效或半有效硫化体系

高温快速硫化体系多使用单硫和双硫键含量高的有效EV和半有效SEV硫化体系,其硫化胶的耐热氧老化性能好。

一般使用高促低硫和硫载体硫化配合,其中后者采用DTDM最好,焦烧时间和硫化特性范围比较宽,容易满足加工要求。

TMTD因为焦烧时间短,喷霜严重而使应用受到限制。

虽然EV和SEV对高温硫化的效果比CV好,但仍不够理想,仍无法解决高温硫化所产生的硫化返原现象和抗屈挠性能差的缺点,应该寻找更好的方法。

3).硫化的特种配合

为了保持高温下硫化胶的交联密度不变,可以采取增加硫用量、增加促进剂用量或两者同时都增加的方法。

但是,增加硫黄用量,会降低硫化效率,并使多硫交联键的含量增加;同时增加硫和促进剂,可使硫化效率保持不变;而保持硫用量不变,增加促进剂用量,可以提高硫化效率,这种方法比较好,已在轮胎工业界得到广泛推广和应用。

如果采用DTDM代替硫效果更好,在高温硫化条件下,获得象CV硫化胶一样优异的性能。

2.高温硫化的其它配合特点

高温硫化体系要求硫化速度快,焦烧倾向小,无喷霜现象,所以配合时最好采用耐热胶种及常量硫黄、高促进剂的办法。

另外,对防焦、防老系统也都有较高的要求。

为了提高硫化速度,须使用足量的硬脂酸以增加锌盐的溶解度,提高体系的活化功能。

除了硫黄硫化体系外,还有一些非硫体系,既可用于不饱和橡胶又可用于饱和橡胶,其中饱和橡胶必须用非硫黄硫化体系。

主要有过氧化物硫化体系、金属氧化物硫化体系、树脂硫化体系等。

1.应用范围

⑴.应用于不饱和橡胶:

如NR、BR、NBR、IR、SBR等。

⑵.应用于饱和橡胶:

如EPM只能用过氧化物硫化,EPDM既可用过氧化物硫化也可以用硫黄硫化。

⑶.应用于杂链橡胶:

如Q的硫化。

2.过氧化物硫化体系的特点

⑴.硫化胶的网络结构为C—C键,键能高,化学稳定性高,具有优异的抗热氧老化性能。

⑵.硫化胶就永久变形低,弹性好,动态性能差。

⑶.加工安全性差,过氧化物价格昂贵。

⑷.在静态密封或高温的静态密封制品中有广泛的应用。

3.常用的过氧化物

常用的过氧化物硫化剂为烷基过氧化物、二酰基过氧化物(过氧化二苯甲酰(BPO))和过氧酯。

其中二烷基过氧化物应用广泛。

如:

过氧化二异丙苯(DCP):

是目前使用最多的一种硫化剂。

4.过氧化物硫化机理

过氧化物的过氧化基团受热易分解产生自由基,自由基引发橡胶分子链产生自由基型的交联反应。

5.过氧化物硫化配合要点:

⑴.用量:

随胶种不同而不同

过氧化物的交联效率:

1g分子的有机过氧化物能使多少克橡胶分子产生化学交联。

若1分子的过氧化物能使1g分子的橡胶交联,交联效率为1。

如:

SBR的交联效率12.5;BR的交联效率为10.5;EPDM、NBR、NR的交联效率为1;IIR的交联效率为0。

⑵.使用活性剂和助硫化剂提高交联效率

ZnO的作用是提高胶料的耐热性,而不是活化剂。

硬脂酸的作用是提高ZnO在橡胶中的溶解度和分散性。

HVA-2(N,N’-邻亚苯基-二马来酰亚胺)也是过氧化物的有效活性剂。

加助硫化剂:

主要是硫黄,其它还有助交联剂如二乙烯基苯、三烷基三聚氰酸酯、不饱和羧酸盐等。

⑶.加入少量碱性物质,如MgO、三乙醇胺等,提高交联效率,避免使用槽法炭黑和白炭黑等酸性填料(酸性物质使自由基钝化);防老剂一般是胺类和酚类防老剂,也容易使自由基钝化,降低交联效率,应尽量少用。

(4).硫化温度:

应该高于过氧化物的分解温度

(5).硫化时间:

一般为过氧化物半衰期的6~10倍。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 理化生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1