一元二次函数教案.docx

上传人:b****5 文档编号:5721827 上传时间:2022-12-31 格式:DOCX 页数:18 大小:30.52KB
下载 相关 举报
一元二次函数教案.docx_第1页
第1页 / 共18页
一元二次函数教案.docx_第2页
第2页 / 共18页
一元二次函数教案.docx_第3页
第3页 / 共18页
一元二次函数教案.docx_第4页
第4页 / 共18页
一元二次函数教案.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

一元二次函数教案.docx

《一元二次函数教案.docx》由会员分享,可在线阅读,更多相关《一元二次函数教案.docx(18页珍藏版)》请在冰豆网上搜索。

一元二次函数教案.docx

一元二次函数教案

二次函数教案

教学应从生活中的实例引出二次函数,进而总结出二次函数定义:

(a,b,c为常数,a≠0),那么y叫做x的二次函数.它是从实践中来,上升为理论的方法,使学生由感性到理性,感到真实贴切,易于接受.进而引导学生自己列表,动手画出二次函数y=x2,y=-x2的图象,总结出其性质,图象的形状--抛物线.以二次函数y=ax2为基础,以具体实例研究,然后由两个特殊型过渡到一般型的二次函数.要始终把由特殊到一般的思维方法孕育在教学中,把配方法交给学生,待定系数法确定二次函数解析式展现给同学们,再通过描点画出二次函数的图象,结合图象确定抛物线的开口方向、对称轴和顶点坐标、图象的平移规律.图象是轴对称图形,并由二次函数的一般形式,通过配方写成顶点式的形式;结合二次方程的有关知识,由一般式可写成截距式的形式.三种形式实质是一致的,各有千秋,要向学生揭示各种形式的特点[如知其抛物线过三点时,可选用一般式求解;知其图象与x轴有交点时,可选用截距式求解],以例在求函数解析式时灵活运用. 

在教学中,要始终贯彻数形结合法、归纳法、演绎法、配方法、待定系数法.要求动手画图,动脑思考,精心观察,培养学生的各种思维方法. 

批点迷津 

二次函数这一内容,必须牢记数形结合法进行思维,知其三点求二次函数解析式的方法.如何结合代数、几何、锐角三角函数及生活实际等找到这三点,是求二次函数解析式的关键所在,要根据其性质、平移规律等进行思维,精心观察,数形结合,才能找到解题的突破口,并根据自变量的取值范围画出图象.一般地说,二次函数的图象是一条抛物线,那么x取值范围必须是实数.若x的取值范围在某一区间,则所画图象只是抛物线的一部分.根据实际问题,有时是整数点.总之,要根据自变量的取值范围具体画出图象. 

在本单元,除抓住"数形结合法"这根主线,对动静的互相转化的辩证关系也要把握适时. 

二、学海导航 

思维基础 

   

  

(一)1.二次函数的图象的开口方向是向,顶点从标是,对称轴是。

 

  2.抛物线的顶点在x轴上,则m的值等于. 

  3.如果把第一条抛物线向上平移个单位(a?

0),再向左平移个单位,就得到第二条抛物线,已知第一条抛物线过点(0,4),则第一条抛物线的函数关系式是 

(二)1.如图代13-3-1所示二次函数的图象,则有() 

图代13-3-1图代13-3-2 

A.a+b+c?

0B.a+b+c=0C.a+b+c?

0D.a+b+c的符号不定 

2.如图1-3-2是抛物线的图象,则下列完全符合条件的是() 

A.a?

0,b?

0,c?

0,b2?

4acB.a?

0,b?

0,c?

0,b2?

4ac 

C.a?

0,b?

0,c?

0,b2?

4acD.a?

0,b?

0,c?

0,b2?

4ac 

  3.已知抛物线的对称轴为x=1,与x轴、y轴的三个交点构成的三角形的面积为6,且与y轴的交点到原点的距离为3,则此二次函数的解析式为() 

  A.或 

  B.或 

  C.或 

  D.或 

学法指要 

  例在直角坐标系中,二次函数的图象与x轴交于A,B两点,与y轴交于点C,其中点A在点B的左边,若∠ACB=90°,. 

(1)求点C的坐标及这个二次函数的解析式; 

(2)试设计两种方案,作一条与y轴不生命,与△ABC的两边相交的直线,使截得的 

三角形与△ABC相似,并且面积是△AOC面积的四分之一. 

 【思考】(第一问)1.坐标轴上点的坐标有何特点?

2.如何求抛物线与y轴的交 

点坐标?

3.如何设出抛物线与x轴的两个交点坐标?

4.线段与坐标之间有何种关系?

你会用坐标表示线段吗?

 

 【思路分析】本例必须准确设出A,B两点坐标,再求出C点坐标,并会用它们表 

示线段的长,将代数问题转化为几何问题,再由几何问题转化为代数问题,相互转化,相互转化,水到渠成. 

 解:

(1)依题意,设A(a,0),B(,0)其中a?

0,β?

0,则a,β是方程 

  

 ∴AOC∽△COB。

 

  

 把A(-4,0)代入①,得 

  

 解这个方程得n=2. 

 ∴所求的二次函数的解析式为 

 现在来解答第二问。

 

 【思考】这第二问所要求作的三角形应具备什么条件?

什么样的三角形与△ABC相似?

在什么条件下可以讨论两个三角形面积的比?

在一个图形上作一和直线,需要确定什么?

△ABC是一个什么样的三角形?

 

 【思路分析】①所求的三角形与△ABC相似;②所求的三角形面积= 

  所求三角形若与△ABC相似,要具备有"两角对应相等","两边对应成比例且夹角相等","三边对应成比例"等判定两三角形相似的条件。

 

  在两三角形相似的条件下,"两三角形面积的比等于相似的平方",即找相似比等于1:

2. 

  在一个图形上,截得一个三角形,需要作一条直线,作一条直线应在图形上确定两个点,且这条直线不能与y轴重合。

 

  分析至此问题十分明确,即在△ABC的两边上找出符合上述条件的两点作一条直线。

 

  再来分析△ABC是一个什么样的三角形,猜测它是直角三角形最为理想。

 

  从第一问得知的条件A(-4,0)B(1,0),C(0,-2)可用勾股定理推出,△ABC确是直角三角形。

 

 这样△ABC∽△CAO∽△BCO,且为作符合条件的直线提供了条件。

下边分述作符合条件直线的方案。

 

 方案1:

依据"三角形两边中点的连线,截得的三角形与原三角形相似",其相似比是1:

2,面积的比为1:

4。

 

 作法:

取AO的中点D,过D作DD?

∥OC, 

 ∴D?

是AC的中点。

 

 ∴AD:

AO=1:

2, 

 即△AD?

D=. 

 △AD?

D∽△ACO∽△ABC. 

  

 图代13-3-3 

 ∴DD?

是所求作的直线,AD?

D是所求作的三角形。

 

 方案2:

利用∠C作一个△BCF△COB。

 

 作法:

在CA上截取CE,使CE=CO=2,在CB上截取CF,使CF=BO=1,连结EF,则△BCF即为所求,如图代13-3-4所示。

请读者证明。

 

  

 图代13-3-4图代13-3-5 

 方案3:

在AC上截取AG,使AG=CO=2,在AB上截取AH,使AH=BC=,连结GH,则△AGH为所求,如图代13-3-5所示,请读者去证明。

 

 方案4:

在CA上截取CM,使CM=BO=1,在CB上截取CN,使CN=CO=2,连结MN,则△CMN为所求,如图代13-3-6所示,请读者去证明。

 

  

 图代13-3-6图代13-3-7 

 方案5:

在BA上截取BP,使BP=BC=,在BC上截取BQ,使BQ=BO=1,连结PQ,则△BPQ为所示,如图代13-3-7所示。

请读者去证明。

 

思维体操 

 例一运动员推铅球,铅球刚出手时离地面米,铅球落地点距离铅球刚出手时 

相应地面上的点10米,铅球运行中最高点离地面3米,已知铅球走过的路线是抛物线.求这个抛物线的解析式. 

图代13-3-8 

 如图,结合题意,知抛物线过,用一般式:

 

解之,于是有 

  

 解方程组,得 

 ; 

 . 

  ∴所求抛物线解析式为 

  或. 

  ∵,这时,抛物线的最高点(-20,3)不在运动员与铅球落地之间,不合题意,舍去. 

  ∴所求抛物线解析式为 

  (0≤x≤10). 

  【扩散2】仿扩散1知抛物线过.因B为顶点,所以利用顶点式最宜,于是可设抛物线的解析式为 

  . 

  又其图象过A,C两点,则 

   

  解方程组,得 

  ; 

  . 

  ∵抛物线最高点(-20,3)不在运动员和铅球之间,不合题意,∴舍去. 

  故所求抛物线的解析式是(0≤x≤10). 

  【扩散3】抛物线与x轴交于两点,即D(x,0),C(10,0),联想截距式解之. 

  于是设抛物线解析式为, 

  其图象又过A,C两点,则有 

  ,∴. 

  又 

  , 

  ∴.② 

  ①②联立解方程组,得 

  ; 

  . 

  但不合题意,舍去. 

  故所求二次函数解析式为(0≤x≤10). 

  【扩散4】由抛物线对称性,设对称点,B(m,3),又C(10,0),应用一般式可获解. 

  设抛物线,则可得 

   

  解这个方程组,得 

  . 

  ∵(m,3)在第一象限,∴m?

0. 

  ∴m=-20(舍去),∴m=4. 

  进而求得:

 

  故所求抛物线解析式是:

(0≤x≤10). 

  【扩散5】如图,这是某空防部队进行射击训练时在平面直角坐标系中的示意图,在地面O,A两个观测点测得空中固定目标C的仰角分别为α和β,OA=1千米,tgα=,tgβ=,位于O点正上方千米D点处的直升飞机向目标C发射防空导弹,该导弹运行达到距地面最大高度3千米时,相应的水平距离为4千米(即图中的E点). 

(1)若导弹运行轨道为一抛物线,求该抛物线的解析式; 

(2)说明按

(1)中轨道运行的导弹能否击中目标C的理由. 

【思路分析】 

①本例应用扩散1~4思路均可,尤以扩散2应用顶点式最佳,读者可仿扩散2求得抛 

物线解析式为:

(0≤x≤10). 

②过点C作CB⊥Ox,垂足为B,然后解Rt△OBC和Rt△ABC,可求得点在抛 

物线上,因此可击中目标C(请读者自己写出完整解答过程). 

【扩散6】有一抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m,现 

把它的图形放在坐标系里(如图所示),若在离跨度中心M点5m处垂直竖直一铁柱支撑拱顶,这铁柱应取多长?

 

图代13-3-9 

【思路分析】本例仿扩散2可设抛物线解析式为(0≤x≤40), 

又抛物线过原点,进而求得,在距离M点5m处,即它们的横坐标是x1=15或x2=25,分别代入抛物线解析式,求得y1=y2=15.所以铁柱应取15m长. 

【评析】由扩散1~6,抛物线应用从体育方面,扩散到军事,涉及现代科技、导弹、 

直升飞机等.进而又扩散到桥梁建筑,涉及到现代化建设的方方面面,告诉同学们,必须学好课本知识,才能适应现代化的需要. 

图代13-3-10 

本例的解题思路扩散,把顶点式、一般式、截距式、抛物线的对称性都进行了展示, 

我们可以根据不同的情况,迅速进行决策,选设不同的解析式,达到求解的目的. 

三、智能显示 

心中有数 

二次函数的知识,是初中三年级数学的重点内容.在解有关二次函数的问题时,应用待 

定系数法和方程、方程组的知识,用到数形结合、观察、想象的思想方法,应当深入理解和掌握这部分知识. 

动手动脑 

1.某商人如果将进货价为8元的商品按每件10元出售时,每天可销售100件,现在采 

用提高售出价,减少进货量的办法增加利润,已知这种商品每件提高1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚利润为最大,并求出最大利润?

 

2.已知抛物线与x轴交于A,B两点,与y轴交于C点,若 

△ABC是等腰三角形,求抛物线的解析式. 

3.已知抛物线. 

(1)求证:

不论m取何值,抛物线与x轴必有两个交点,并且有一个交点是A(2,0). 

(2)设抛物线与x轴的另一个交点为B,AB的长为d,求d与m之间的函数关系式. 

(3)当d=10,P(a,b)为抛物线上一点. 

①当△ABP是直角三角形时,求b的值; 

②当△APB是锐角三角形、钝角三角形时,分别写出b的范围(不要求写出解答过程). 

创新园地 

例如图,有一模型拱门,其拱门的徒刑为抛物线的一部分(该抛物线为二次函数 

的图形),拱门宽AB=20cm,拱门高PO为8cm,已知小明的玩具车宽为12cm,车高hcm,就能顺利通过这拱门,那么满足这个条件h的最大整数为. 

提示:

本例没有告知拱门所在坐标,这就需要我们自己建立直角坐标系后求解. 

图代13-3-11 

四、同步题库 

一、填空题 

1.把抛物线向左平移2个单位得抛物线,接着再向下平移3个 

单位,得抛物线. 

2.函数图象的对称轴是,最大值是. 

3.正方形边长为3,如果边长增加x面积就增加y,那么y与x之间的函数关系 

是. 

4.已知二次函数,通过配方化为的形 

为. 

5.若二次函数(c不为零),当x取x1,x2(x1≠x2)时,函数值相等,则 

x1与x2的关系是. 

  6.抛物线当b=0时,对称轴是,当a,b同号时,对称轴在y轴侧,当a,b异号时,对称轴在y轴侧. 

  7.抛物线开口,对称轴是,顶点坐标是.如果y随x的增大而减小,那么x的取值范围是. 

  8.若a?

0,则函数图象的顶点在第象限;当x?

时,函数值随x的增大而. 

  9.二次函数(a≠0)当a?

0时,图象的开口a?

0时,图象的开口,顶点坐标是. 

  10.抛物线,开口,顶点坐标是,对称轴是. 

  11.二次函数的图象的顶点坐标是(1,-2). 

  12.已知,当x时,函数值随x的增大而减小. 

  13.已知直线与抛物线交点的横坐标为2,则k=,交点坐标为. 

  14.用配方法将二次函数化成的形式是. 

  15.如果二次函数的最小值是1,那么m的值是. 

  二、填空题 

  16.在抛物线上的点是() 

  A.(0,-1)B.C.(-1,5)D.(3,4) 

  17.直线与抛物线的交点个数是() 

  A.0个B.1个C.2个D.互相重合的两个 

  18.关于抛物线(a≠0),下面几点结论中,正确的有() 

①当a?

0时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大,当 

a?

0时,情况相反. 

②抛物线的最高点或最低点都是指抛物线的顶点. 

③只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同. 

④一元二次方程(a≠0)的根,就是抛物线与x轴 

交点的横坐标. 

A.①②③④B.①②③C.①②D.① 

19.二次函数y=(x+1)(x-3),则图象的对称轴是() 

A.x=1B.x=-2C.x=3D.x=-3 

20.如果一次函数的图象如图代13-3-12中A所示,那么二次函 

-3的大致图象是() 

图代13-2-12 

21.若抛物线的对称轴是则() 

A.2B.C.4D. 

22.若函数的图象经过点(1,-2),那么抛物线的性 

质说得全对的是() 

A.开口向下,对称轴在y轴右侧,图象与正半y轴相交 

B.开口向下,对称轴在y轴左侧,图象与正半y轴相交 

C.开口向上,对称轴在y轴左侧,图象与负半y轴相交 

D.开口向下,对称轴在y轴右侧,图象与负半y轴相交 

23.二次函数中,如果b+c=0,则那时图象经过的点是() 

A.(-1,-1)B.(1,1)C.(1,-1)D.(-1,1) 

24.函数与(a?

0)在同一直角坐标系中的大致图象是() 

图代13-3-13 

25.如图代13-3-14,抛物线与y轴交于A点,与x轴正半轴交于B, 

C两点,且BC=3,S△ABC=6,则b的值是() 

A.b=5B.b=-5C.b=±5D.b=4 

图代13-3-14 

26.二次函数(a?

0),若要使函数值永远小于零,则自变量x的取值范围是 

() 

A.X取任何实数B.x?

0C.x?

0D.x?

0或x?

27.抛物线向左平移1个单位,向下平移两个单位后的解析式为 

() 

A.B. 

C.D. 

28.二次函数(k?

0)图象的顶点在() 

A.y轴的负半轴上B.y轴的正半轴上 

C.x轴的负半轴上D.x轴的正半轴上 

29.四个函数:

(x?

0),(x?

0),其中图象经过原 

点的函数有() 

A.1个B.2个C.3个D.4个 

30.不论x为值何,函数(a≠0)的值永远小于0的条件是() 

A.a?

0,Δ?

0B.a?

0,Δ?

C.a?

0,Δ?

0D.a?

0,Δ?

三、解答题 

31.已知二次函数和的图象都经过x 

轴上两上不同的点M,N,求a,b的值. 

32.已知二次函数的图象经过点A(2,4),顶点的横坐标为,它 

的图象与x轴交于两点B(x1,0),C(x2,0),与y轴交于点D,且,试问:

y轴上是否存在点P,使得△POB与△DOC相似(O为坐标原点)?

若存在,请求出过P,B两点直线的解析式,若不存在,请说明理由. 

33.如图代13-3-15,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A,B两点,该 

抛物线的对称轴x=-21与x轴相交于点C,且∠ABC=90°,求:

(1)直线AB的解析式;

(2)抛物线的解析式. 

图代13-3-15图代13-3-16 

34.中图代13-3-16,抛物线交x轴正方向于A,B两点,交y轴正方 

向于C点,过A,B,C三点做⊙D,若⊙D与y轴相切.

(1)求a,c满足的关系能工巧匠;

(2)设∠ACB=α,求tgα;(3)设抛物线顶点为P,判断直线PA与⊙O的位置关系并证明. 

35.如图代13-3-17,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示 

意图,横断面的地平线为x轴,横断面的对称轴为y轴,桥拱的DGD'部分为一段抛物线,顶点C的高度为8米,AD和A'D'是两侧高为5.5米的支柱,OA和OA'为两个方向的汽车通行区,宽都为15米,线段CD和C'D'为两段对称的上桥斜坡,其坡度为1∶4. 

(1)桥拱DGD'所在抛物线的解析式及CC'的长; 

(2)BE和B'E'为支撑斜坡的立柱,其高都为4米,相应的AB和A'B'为两个方 

向的行人及非机动车通行区,试求AB和A'B'的宽; 

(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,车 

载大型设备的顶部与地面的距离均为7米,它能否从OA(或OA')区域安全通过?

请说明理由. 

图代13-3-17 

36.已知:

抛物线与x轴交于两点(a?

b).O 

为坐标原点,分别以OA,OB为直径作⊙O1和⊙O2在y轴的哪一侧?

简要说明理由,并指出两圆的位置关系. 

37.如果抛物线与x轴都交于A,B两点,且A点在x轴 

的正半轴上,B点在x同的负半轴上,OA的长是a,OB的长是b. 

(1)求m的取值范围; 

(2)若a∶b=3∶1,求m的值,并写出此时抛物线的解析式; 

(3)设

(2)中的抛物线与y轴交于点C,抛物线的顶点是M,问:

抛物线上是否存在 

点P,使△PAB的面积等于△BCM面积的8倍?

若存在,求出P点的坐标;若不存在,请说明理由. 

38.已知:

如图代13-3-18,EB是⊙O的直径,且EB=6,在BE的延长线上取点P,使EP=EB.A 

是EP上一点,过A作⊙O的切线AD,切点为D,过D作DF⊥AB于F,过B作AD的垂线BH,交AD的延长线于H,连结ED和FH. 

图代13-3-18 

(1)若AE=2,求AD的长. 

(2)当点A在EP上移动(点A不与点E重合)时,①是否总有?

试证明 

你的结论;②设ED=x,BH=y,求y与x的函数关系式,并写出自变量x的取值范围. 

39.已知二次函数的图象与x轴的交点为 

A,B(点A在点B右边),与y轴的交点为C. 

(1)若△ABC为Rt△,求m的值; 

(2)在△ABC中,若AC=BC,求∠ACB的正弦值; 

(3)设△ABC的面积为S,求当m为何值时,S有最小值,并求这个最小值. 

40.如图代13-3-19,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B, 

满足OA∶OB=4∶3,以OC为直径作⊙D,设⊙D的半径为2. 

图代13-3-19 

(1)求⊙C的圆心坐标. 

(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式. 

(3)抛物线(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点 

为B,求抛物线的解析式. 

41.已知直线和,二次函数图象的顶点为M. 

(1)若M恰在直线与的交点处,试证明:

无论m取何实数值, 

二次函数的图象与直线总有两个不同的交点. 

(2)在

(1)的条件下,若直线过点D(0,-3),求二次函数 

的表达式,并作出其大致图象. 

图代13-3-20 

(3)在

(2)的条件下,若二次函数的图象与y轴交于点C,与x同 

的左交点为A,试在直线上求异于M点P,使P在△CMA的外接圆上. 

42.如图代13-3-20,已知抛物线与x轴从左至右交于A,B两点, 

与y轴交于点C,且∠BAC=α,∠ABC=β,tgα-tgβ=2,∠ACB=90°. 

(1)求点C的坐标; 

(2)求抛物线的解析式; 

(3)若抛物线的顶点为P,求四边形ABPC的面积. 

参考答案 

动脑动手 

1.设每件提高x元(0≤x≤10),即每件可获利润(2+x)元,则每天可销售(100-10x) 

件,设每天所获利润为y元,依题意,得 

  ∴当x=4时(0≤x≤10)所获利润最大,即售出价为14元,每天所赚得最大利润360元. 

  2.∵, 

  ∴当x=0时,y=4. 

当时. 

即抛物线与y轴的交点为(0,4),与x轴的交点为A(3,0),. 

(1)当AC=BC时, 

  ∴ 

(2)当AC=AB时, 

  ∴. 

  ∴. 

  当时,; 

  当时,. 

(3)当AB=BC时, 

, 

  ∴. 

  ∴. 

  可求抛物线解析式为:

或. 

  3.

(1)∵ 

   

   

  图代13-3-21 

  ∴不论m取何值,抛物线与x轴必有两个交点. 

  令y=0,得 

  , 

  ∴. 

  ∴两交点中必有一个交点是A(2,0). 

(2)由

(1)得另一个交点B的坐标是(m2+3,0). 

, 

∵m2+10?

0,∴d=m2+1. 

(3)①当d=10时,得m2=9. 

∴A(2,0),B(12,0). 

该抛物线的对称轴是直线x=7,顶点为(7,-25),∴AB的中点E(7,0). 

过点P作PM⊥AB于点M,连结PE, 

则, 

∴.① 

∵点PD在抛物线上, 

∴.② 

解①②联合方程组,得. 

当b=0时,点P在x轴上,△ABP不存在,b=0,舍去.∴b=-1. 

注:

求b的值还有其他思路,请读者探觅,写出解答过程. 

②△ABP为锐角三角形时,则-25≤b?

-1; 

△ABP为钝角三角形时,则b?

-1,且b≠0. 

同步题库 

一、填空题 

1.;2.;3.;4. 

;5.互为相反数;6.y轴,左,右;7.下,x=-1,(-1,-3),x?

-1;8.四,增大;9.向上,向下,;10.向下,(h,0),x=h;11.-1,-2;12.x?

-1;13.-17,(2,3);14.;15.10. 

二、选择题 

16.B17.C18.A19.A20.C21.D22.B23.B24.D25.B26.D27.C28. 

C29.A30.D 

三、解答题 

31.解法一:

依题意,设M(x1,0),N(x2,0)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1